21 #ifndef OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
22 #define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
24 #include <opm/output/data/Aquifer.hpp>
26 #include <opm/input/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp>
28 #include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
33 #include <unordered_map>
39 template <
typename TypeTag>
43 using Simulator = GetPropType<TypeTag, Properties::Simulator>;
44 using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
45 using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
46 using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
48 using GridView = GetPropType<TypeTag, Properties::GridView>;
49 using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
51 enum { dimWorld = GridView::dimensionworld };
53 static const int numEq = BlackoilIndices::numEq;
55 using Eval = DenseAd::Evaluation<double, numEq>;
56 using Toolbox = MathToolbox<Eval>;
60 const std::unordered_map<int, int>& cartesian_to_compressed,
61 const Simulator& ebos_simulator,
62 const int* global_cell)
64 , ebos_simulator_ (ebos_simulator)
66 , cumulative_flux_(0.0)
67 , global_cell_ (global_cell)
68 , init_pressure_ (aquifer.numCells(), 0.0)
70 this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(0), -1);
72 auto aquifer_on_process =
false;
73 for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) {
74 const auto* cell = aquifer.getCellPrt(idx);
77 auto search = cartesian_to_compressed.find(cell->global_index);
78 if (search != cartesian_to_compressed.end()) {
79 this->cell_to_aquifer_cell_idx_[search->second] = idx;
80 aquifer_on_process =
true;
84 if (aquifer_on_process) {
85 this->checkConnectsToReservoir();
89 void initFromRestart(
const data::Aquifers& aquiferSoln)
91 auto xaqPos = aquiferSoln.find(this->aquiferID());
92 if (xaqPos == aquiferSoln.end())
95 if (this->connects_to_reservoir_) {
96 this->cumulative_flux_ = xaqPos->second.volume;
99 if (
const auto* aqData = xaqPos->second.typeData.template get<data::AquiferType::Numerical>();
102 this->init_pressure_ = aqData->initPressure;
105 this->solution_set_from_restart_ =
true;
110 this->pressure_ = this->calculateAquiferPressure();
111 this->flux_rate_ = this->calculateAquiferFluxRate();
112 this->cumulative_flux_ += this->flux_rate_ * this->ebos_simulator_.timeStepSize();
115 data::AquiferData aquiferData()
const
117 data::AquiferData data;
118 data.aquiferID = this->aquiferID();
119 data.pressure = this->pressure_;
120 data.fluxRate = this->flux_rate_;
121 data.volume = this->cumulative_flux_;
123 auto* aquNum = data.typeData.template create<data::AquiferType::Numerical>();
124 aquNum->initPressure = this->init_pressure_;
129 void initialSolutionApplied()
131 if (this->solution_set_from_restart_) {
135 this->pressure_ = this->calculateAquiferPressure(this->init_pressure_);
136 this->flux_rate_ = 0.;
137 this->cumulative_flux_ = 0.;
140 int aquiferID()
const
142 return static_cast<int>(this->id_);
146 const std::size_t id_;
147 const Simulator& ebos_simulator_;
149 double cumulative_flux_;
150 const int* global_cell_;
151 std::vector<double> init_pressure_{};
153 bool solution_set_from_restart_ {
false};
154 bool connects_to_reservoir_ {
false};
157 std::vector<int> cell_to_aquifer_cell_idx_;
159 inline bool co2store_()
const
161 return ebos_simulator_.vanguard().eclState().runspec().co2Storage();
164 inline int phaseIdx_()
const
167 return FluidSystem::oilPhaseIdx;
169 return FluidSystem::waterPhaseIdx;
172 void checkConnectsToReservoir()
174 ElementContext elem_ctx(this->ebos_simulator_);
175 auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin</*codim=*/0>(),
176 this->ebos_simulator_.gridView().template end</*codim=*/0>(),
177 [&elem_ctx,
this](
const auto& elem) ->
bool
179 elem_ctx.updateStencil(elem);
181 const auto cell_index = elem_ctx
182 .globalSpaceIndex(0, 0);
184 return this->cell_to_aquifer_cell_idx_[cell_index] == 0;
187 assert ((elemIt != this->ebos_simulator_.gridView().template end</*codim=*/0>())
188 &&
"Internal error locating numerical aquifer's connecting cell");
190 this->connects_to_reservoir_ =
191 elemIt->partitionType() == Dune::InteriorEntity;
194 double calculateAquiferPressure()
const
196 auto capture = std::vector<double>(this->init_pressure_.size(), 0.0);
197 return this->calculateAquiferPressure(capture);
200 double calculateAquiferPressure(std::vector<double>& cell_pressure)
const
202 double sum_pressure_watervolume = 0.;
203 double sum_watervolume = 0.;
205 ElementContext elem_ctx(this->ebos_simulator_);
206 const auto& gridView = this->ebos_simulator_.gridView();
207 auto elemIt = gridView.template begin<0>();
208 const auto& elemEndIt = gridView.template end<0>();
209 OPM_BEGIN_PARALLEL_TRY_CATCH();
211 for (; elemIt != elemEndIt; ++elemIt) {
212 const auto& elem = *elemIt;
213 if (elem.partitionType() != Dune::InteriorEntity) {
216 elem_ctx.updatePrimaryStencil(elem);
218 const size_t cell_index = elem_ctx.globalSpaceIndex(0, 0);
219 const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
224 elem_ctx.updatePrimaryIntensiveQuantities(0);
225 const auto& iq0 = elem_ctx.intensiveQuantities(0, 0);
226 const auto& fs = iq0.fluidState();
231 const double water_saturation = fs.saturation(this->phaseIdx_()).value();
232 const double porosity = iq0.porosity().value();
233 const double volume = elem_ctx.dofTotalVolume(0, 0);
235 const double water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
236 const double water_volume = volume * porosity * water_saturation;
237 sum_pressure_watervolume += water_volume * water_pressure_reservoir;
238 sum_watervolume += water_volume;
240 cell_pressure[idx] = water_pressure_reservoir;
242 OPM_END_PARALLEL_TRY_CATCH(
"AquiferNumerical::calculateAquiferPressure() failed: ", this->ebos_simulator_.vanguard().grid().comm());
243 const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
244 comm.sum(&sum_pressure_watervolume, 1);
245 comm.sum(&sum_watervolume, 1);
248 comm.sum(cell_pressure.data(), cell_pressure.size());
250 return sum_pressure_watervolume / sum_watervolume;
253 double calculateAquiferFluxRate()
const
255 double aquifer_flux = 0.0;
257 if (! this->connects_to_reservoir_) {
261 ElementContext elem_ctx(this->ebos_simulator_);
262 const auto& gridView = this->ebos_simulator_.gridView();
263 auto elemIt = gridView.template begin<0>();
264 const auto& elemEndIt = gridView.template end<0>();
265 for (; elemIt != elemEndIt; ++elemIt) {
266 const auto& elem = *elemIt;
267 if (elem.partitionType() != Dune::InteriorEntity) {
271 elem_ctx.updateStencil(elem);
273 const std::size_t cell_index = elem_ctx.globalSpaceIndex(0, 0);
274 const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
279 elem_ctx.updateAllIntensiveQuantities();
280 elem_ctx.updateAllExtensiveQuantities();
282 const std::size_t num_interior_faces = elem_ctx.numInteriorFaces( 0);
284 const auto& stencil = elem_ctx.stencil(0);
287 for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
288 const auto& face = stencil.interiorFace(face_idx);
290 const std::size_t i = face.interiorIndex();
291 const std::size_t j = face.exteriorIndex();
294 const std::size_t J = stencil.globalSpaceIndex(j);
296 assert(stencil.globalSpaceIndex(i) == cell_index);
300 if (this->cell_to_aquifer_cell_idx_[J] > 0) {
303 const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, 0);
304 const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_()));
306 const std::size_t up_id = water_flux >= 0.0 ? i : j;
307 const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
308 const double invB = Toolbox::value(intQuantsIn.fluidState().invB(this->phaseIdx_()));
309 const double face_area = face.area();
310 aquifer_flux += water_flux * invB * face_area;
Definition: AquiferNumerical.hpp:41
This file contains a set of helper functions used by VFPProd / VFPInj.
Definition: BlackoilPhases.hpp:27