Actual source code: ts.c
petsc-3.7.4 2016-10-02
2: #include <petsc/private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
4: #include <petscdmda.h>
5: #include <petscviewer.h>
6: #include <petscdraw.h>
8: /* Logging support */
9: PetscClassId TS_CLASSID, DMTS_CLASSID;
10: PetscLogEvent TS_AdjointStep, TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
12: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
14: struct _n_TSMonitorDrawCtx {
15: PetscViewer viewer;
16: Vec initialsolution;
17: PetscBool showinitial;
18: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
19: PetscBool showtimestepandtime;
20: };
24: /*@C
25: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
27: Collective on TS
29: Input Parameters:
30: + ts - TS object you wish to monitor
31: . name - the monitor type one is seeking
32: . help - message indicating what monitoring is done
33: . manual - manual page for the monitor
34: . monitor - the monitor function
35: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
37: Level: developer
39: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
40: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
41: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
42: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
43: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
44: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
45: PetscOptionsFList(), PetscOptionsEList()
46: @*/
47: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
48: {
49: PetscErrorCode ierr;
50: PetscViewer viewer;
51: PetscViewerFormat format;
52: PetscBool flg;
55: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
56: if (flg) {
57: PetscViewerAndFormat *vf;
58: PetscViewerAndFormatCreate(viewer,format,&vf);
59: PetscObjectDereference((PetscObject)viewer);
60: if (monitorsetup) {
61: (*monitorsetup)(ts,vf);
62: }
63: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
64: }
65: return(0);
66: }
70: /*@C
71: TSAdjointMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
73: Collective on TS
75: Input Parameters:
76: + ts - TS object you wish to monitor
77: . name - the monitor type one is seeking
78: . help - message indicating what monitoring is done
79: . manual - manual page for the monitor
80: . monitor - the monitor function
81: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
83: Level: developer
85: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
86: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
87: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
88: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
89: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
90: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
91: PetscOptionsFList(), PetscOptionsEList()
92: @*/
93: PetscErrorCode TSAdjointMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
94: {
95: PetscErrorCode ierr;
96: PetscViewer viewer;
97: PetscViewerFormat format;
98: PetscBool flg;
101: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
102: if (flg) {
103: PetscViewerAndFormat *vf;
104: PetscViewerAndFormatCreate(viewer,format,&vf);
105: PetscObjectDereference((PetscObject)viewer);
106: if (monitorsetup) {
107: (*monitorsetup)(ts,vf);
108: }
109: TSAdjointMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
110: }
111: return(0);
112: }
116: /*@
117: TSSetFromOptions - Sets various TS parameters from user options.
119: Collective on TS
121: Input Parameter:
122: . ts - the TS context obtained from TSCreate()
124: Options Database Keys:
125: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGL, TSSSP
126: . -ts_save_trajectory - checkpoint the solution at each time-step
127: . -ts_max_steps <maxsteps> - maximum number of time-steps to take
128: . -ts_final_time <time> - maximum time to compute to
129: . -ts_dt <dt> - initial time step
130: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
131: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
132: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
133: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
134: . -ts_rtol <rtol> - relative tolerance for local truncation error
135: . -ts_atol <atol> Absolute tolerance for local truncation error
136: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
137: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
138: . -ts_monitor - print information at each timestep
139: . -ts_monitor_lg_solution - Monitor solution graphically
140: . -ts_monitor_lg_error - Monitor error graphically
141: . -ts_monitor_lg_timestep - Monitor timestep size graphically
142: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
143: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
144: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
145: . -ts_monitor_draw_solution - Monitor solution graphically
146: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
147: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
148: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
149: . -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts
150: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
151: . -ts_adjoint_monitor - print information at each adjoint time step
152: - -ts_adjoint_monitor_draw_sensi - monitor the sensitivity of the first cost function wrt initial conditions (lambda[0]) graphically
154: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
156: Level: beginner
158: .keywords: TS, timestep, set, options, database
160: .seealso: TSGetType()
161: @*/
162: PetscErrorCode TSSetFromOptions(TS ts)
163: {
164: PetscBool opt,flg,tflg;
165: PetscErrorCode ierr;
166: char monfilename[PETSC_MAX_PATH_LEN];
167: PetscReal time_step;
168: TSExactFinalTimeOption eftopt;
169: char dir[16];
170: TSIFunction ifun;
171: const char *defaultType;
172: char typeName[256];
177: TSRegisterAll();
178: TSGetIFunction(ts,NULL,&ifun,NULL);
180: PetscObjectOptionsBegin((PetscObject)ts);
181: if (((PetscObject)ts)->type_name)
182: defaultType = ((PetscObject)ts)->type_name;
183: else
184: defaultType = ifun ? TSBEULER : TSEULER;
185: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
186: if (opt) {
187: TSSetType(ts,typeName);
188: } else {
189: TSSetType(ts,defaultType);
190: }
192: /* Handle generic TS options */
193: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
194: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
195: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
196: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
197: if (flg) {TSSetTimeStep(ts,time_step);}
198: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
199: if (flg) {TSSetExactFinalTime(ts,eftopt);}
200: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
201: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
202: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
203: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
204: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
206: #if defined(PETSC_HAVE_SAWS)
207: {
208: PetscBool set;
209: flg = PETSC_FALSE;
210: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
211: if (set) {
212: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
213: }
214: }
215: #endif
217: /* Monitor options */
218: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
219: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
220: TSAdjointMonitorSetFromOptions(ts,"-ts_adjoint_monitor","Monitor adjoint timestep size","TSAdjointMonitorDefault",TSAdjointMonitorDefault,NULL);
222: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
223: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
225: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
226: if (opt) {
227: TSMonitorLGCtx ctx;
228: PetscInt howoften = 1;
230: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
231: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
232: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
233: }
235: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
236: if (opt) {
237: TSMonitorLGCtx ctx;
238: PetscInt howoften = 1;
240: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
241: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
242: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
243: }
245: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
246: if (opt) {
247: TSMonitorLGCtx ctx;
248: PetscInt howoften = 1;
250: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
251: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
252: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
253: }
254: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
255: if (opt) {
256: TSMonitorLGCtx ctx;
257: PetscInt howoften = 1;
259: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
260: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
261: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
262: }
263: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
264: if (opt) {
265: TSMonitorLGCtx ctx;
266: PetscInt howoften = 1;
268: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
269: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
270: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
271: }
272: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
273: if (opt) {
274: TSMonitorSPEigCtx ctx;
275: PetscInt howoften = 1;
277: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
278: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
279: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
280: }
281: opt = PETSC_FALSE;
282: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
283: if (opt) {
284: TSMonitorDrawCtx ctx;
285: PetscInt howoften = 1;
287: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
288: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
289: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
290: }
291: opt = PETSC_FALSE;
292: PetscOptionsName("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",&opt);
293: if (opt) {
294: TSMonitorDrawCtx ctx;
295: PetscInt howoften = 1;
297: PetscOptionsInt("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",howoften,&howoften,NULL);
298: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
299: TSAdjointMonitorSet(ts,TSAdjointMonitorDrawSensi,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
300: }
301: opt = PETSC_FALSE;
302: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
303: if (opt) {
304: TSMonitorDrawCtx ctx;
305: PetscReal bounds[4];
306: PetscInt n = 4;
307: PetscDraw draw;
308: PetscDrawAxis axis;
310: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
311: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
312: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
313: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
314: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
315: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
316: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
317: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
318: }
319: opt = PETSC_FALSE;
320: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
321: if (opt) {
322: TSMonitorDrawCtx ctx;
323: PetscInt howoften = 1;
325: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
326: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
327: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
328: }
330: opt = PETSC_FALSE;
331: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
332: if (flg) {
333: const char *ptr,*ptr2;
334: char *filetemplate;
335: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
336: /* Do some cursory validation of the input. */
337: PetscStrstr(monfilename,"%",(char**)&ptr);
338: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
339: for (ptr++; ptr && *ptr; ptr++) {
340: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
341: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
342: if (ptr2) break;
343: }
344: PetscStrallocpy(monfilename,&filetemplate);
345: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
346: }
348: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
349: if (flg) {
350: TSMonitorDMDARayCtx *rayctx;
351: int ray = 0;
352: DMDADirection ddir;
353: DM da;
354: PetscMPIInt rank;
356: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
357: if (dir[0] == 'x') ddir = DMDA_X;
358: else if (dir[0] == 'y') ddir = DMDA_Y;
359: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
360: sscanf(dir+2,"%d",&ray);
362: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
363: PetscNew(&rayctx);
364: TSGetDM(ts,&da);
365: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
366: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
367: if (!rank) {
368: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
369: }
370: rayctx->lgctx = NULL;
371: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
372: }
373: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
374: if (flg) {
375: TSMonitorDMDARayCtx *rayctx;
376: int ray = 0;
377: DMDADirection ddir;
378: DM da;
379: PetscInt howoften = 1;
381: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
382: if (dir[0] == 'x') ddir = DMDA_X;
383: else if (dir[0] == 'y') ddir = DMDA_Y;
384: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
385: sscanf(dir+2, "%d", &ray);
387: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
388: PetscNew(&rayctx);
389: TSGetDM(ts, &da);
390: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
391: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
392: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
393: }
395: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
396: if (opt) {
397: TSMonitorEnvelopeCtx ctx;
399: TSMonitorEnvelopeCtxCreate(ts,&ctx);
400: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
401: }
403: flg = PETSC_FALSE;
404: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
405: if (flg) {
406: DM dm;
407: DMTS tdm;
409: TSGetDM(ts, &dm);
410: DMGetDMTS(dm, &tdm);
411: tdm->ijacobianctx = NULL;
412: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
413: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
414: }
416: if (ts->adapt) {
417: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
418: }
420: /* Handle specific TS options */
421: if (ts->ops->setfromoptions) {
422: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
423: }
425: /* TS trajectory must be set after TS, since it may use some TS options above */
426: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
427: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
428: if (tflg) {
429: TSSetSaveTrajectory(ts);
430: }
431: tflg = ts->adjoint_solve ? PETSC_TRUE : PETSC_FALSE;
432: PetscOptionsBool("-ts_adjoint_solve","Solve the adjoint problem immediately after solving the forward problem","",tflg,&tflg,&flg);
433: if (flg) {
434: TSSetSaveTrajectory(ts);
435: ts->adjoint_solve = tflg;
436: }
438: /* process any options handlers added with PetscObjectAddOptionsHandler() */
439: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
440: PetscOptionsEnd();
442: if (ts->trajectory) {
443: TSTrajectorySetFromOptions(ts->trajectory,ts);
444: }
446: TSGetSNES(ts,&ts->snes);
447: if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
448: SNESSetFromOptions(ts->snes);
449: return(0);
450: }
454: /*@
455: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
457: Collective on TS
459: Input Parameters:
460: . ts - the TS context obtained from TSCreate()
462: Note: This routine should be called after all TS options have been set
464: Level: intermediate
466: .seealso: TSGetTrajectory(), TSAdjointSolve()
468: .keywords: TS, set, checkpoint,
469: @*/
470: PetscErrorCode TSSetSaveTrajectory(TS ts)
471: {
476: if (!ts->trajectory) {
477: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
478: TSTrajectorySetFromOptions(ts->trajectory,ts);
479: }
480: return(0);
481: }
485: /*@
486: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
487: set with TSSetRHSJacobian().
489: Collective on TS and Vec
491: Input Parameters:
492: + ts - the TS context
493: . t - current timestep
494: - U - input vector
496: Output Parameters:
497: + A - Jacobian matrix
498: . B - optional preconditioning matrix
499: - flag - flag indicating matrix structure
501: Notes:
502: Most users should not need to explicitly call this routine, as it
503: is used internally within the nonlinear solvers.
505: See KSPSetOperators() for important information about setting the
506: flag parameter.
508: Level: developer
510: .keywords: SNES, compute, Jacobian, matrix
512: .seealso: TSSetRHSJacobian(), KSPSetOperators()
513: @*/
514: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
515: {
517: PetscObjectState Ustate;
518: DM dm;
519: DMTS tsdm;
520: TSRHSJacobian rhsjacobianfunc;
521: void *ctx;
522: TSIJacobian ijacobianfunc;
523: TSRHSFunction rhsfunction;
529: TSGetDM(ts,&dm);
530: DMGetDMTS(dm,&tsdm);
531: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
532: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
533: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
534: PetscObjectStateGet((PetscObject)U,&Ustate);
535: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
536: return(0);
537: }
539: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
541: if (ts->rhsjacobian.reuse) {
542: MatShift(A,-ts->rhsjacobian.shift);
543: MatScale(A,1./ts->rhsjacobian.scale);
544: if (A != B) {
545: MatShift(B,-ts->rhsjacobian.shift);
546: MatScale(B,1./ts->rhsjacobian.scale);
547: }
548: ts->rhsjacobian.shift = 0;
549: ts->rhsjacobian.scale = 1.;
550: }
552: if (rhsjacobianfunc) {
553: PetscBool missing;
554: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
555: PetscStackPush("TS user Jacobian function");
556: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
557: PetscStackPop;
558: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
559: if (A) {
560: MatMissingDiagonal(A,&missing,NULL);
561: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
562: }
563: if (B && B != A) {
564: MatMissingDiagonal(B,&missing,NULL);
565: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
566: }
567: } else {
568: MatZeroEntries(A);
569: if (A != B) {MatZeroEntries(B);}
570: }
571: ts->rhsjacobian.time = t;
572: ts->rhsjacobian.X = U;
573: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
574: return(0);
575: }
579: /*@
580: TSComputeRHSFunction - Evaluates the right-hand-side function.
582: Collective on TS and Vec
584: Input Parameters:
585: + ts - the TS context
586: . t - current time
587: - U - state vector
589: Output Parameter:
590: . y - right hand side
592: Note:
593: Most users should not need to explicitly call this routine, as it
594: is used internally within the nonlinear solvers.
596: Level: developer
598: .keywords: TS, compute
600: .seealso: TSSetRHSFunction(), TSComputeIFunction()
601: @*/
602: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
603: {
605: TSRHSFunction rhsfunction;
606: TSIFunction ifunction;
607: void *ctx;
608: DM dm;
614: TSGetDM(ts,&dm);
615: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
616: DMTSGetIFunction(dm,&ifunction,NULL);
618: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
620: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
621: if (rhsfunction) {
622: PetscStackPush("TS user right-hand-side function");
623: (*rhsfunction)(ts,t,U,y,ctx);
624: PetscStackPop;
625: } else {
626: VecZeroEntries(y);
627: }
629: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
630: return(0);
631: }
635: /*@
636: TSComputeSolutionFunction - Evaluates the solution function.
638: Collective on TS and Vec
640: Input Parameters:
641: + ts - the TS context
642: - t - current time
644: Output Parameter:
645: . U - the solution
647: Note:
648: Most users should not need to explicitly call this routine, as it
649: is used internally within the nonlinear solvers.
651: Level: developer
653: .keywords: TS, compute
655: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
656: @*/
657: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
658: {
659: PetscErrorCode ierr;
660: TSSolutionFunction solutionfunction;
661: void *ctx;
662: DM dm;
667: TSGetDM(ts,&dm);
668: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
670: if (solutionfunction) {
671: PetscStackPush("TS user solution function");
672: (*solutionfunction)(ts,t,U,ctx);
673: PetscStackPop;
674: }
675: return(0);
676: }
679: /*@
680: TSComputeForcingFunction - Evaluates the forcing function.
682: Collective on TS and Vec
684: Input Parameters:
685: + ts - the TS context
686: - t - current time
688: Output Parameter:
689: . U - the function value
691: Note:
692: Most users should not need to explicitly call this routine, as it
693: is used internally within the nonlinear solvers.
695: Level: developer
697: .keywords: TS, compute
699: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
700: @*/
701: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
702: {
703: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
704: void *ctx;
705: DM dm;
710: TSGetDM(ts,&dm);
711: DMTSGetForcingFunction(dm,&forcing,&ctx);
713: if (forcing) {
714: PetscStackPush("TS user forcing function");
715: (*forcing)(ts,t,U,ctx);
716: PetscStackPop;
717: }
718: return(0);
719: }
723: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
724: {
725: Vec F;
729: *Frhs = NULL;
730: TSGetIFunction(ts,&F,NULL,NULL);
731: if (!ts->Frhs) {
732: VecDuplicate(F,&ts->Frhs);
733: }
734: *Frhs = ts->Frhs;
735: return(0);
736: }
740: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
741: {
742: Mat A,B;
746: if (Arhs) *Arhs = NULL;
747: if (Brhs) *Brhs = NULL;
748: TSGetIJacobian(ts,&A,&B,NULL,NULL);
749: if (Arhs) {
750: if (!ts->Arhs) {
751: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
752: }
753: *Arhs = ts->Arhs;
754: }
755: if (Brhs) {
756: if (!ts->Brhs) {
757: if (A != B) {
758: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
759: } else {
760: PetscObjectReference((PetscObject)ts->Arhs);
761: ts->Brhs = ts->Arhs;
762: }
763: }
764: *Brhs = ts->Brhs;
765: }
766: return(0);
767: }
771: /*@
772: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
774: Collective on TS and Vec
776: Input Parameters:
777: + ts - the TS context
778: . t - current time
779: . U - state vector
780: . Udot - time derivative of state vector
781: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
783: Output Parameter:
784: . Y - right hand side
786: Note:
787: Most users should not need to explicitly call this routine, as it
788: is used internally within the nonlinear solvers.
790: If the user did did not write their equations in implicit form, this
791: function recasts them in implicit form.
793: Level: developer
795: .keywords: TS, compute
797: .seealso: TSSetIFunction(), TSComputeRHSFunction()
798: @*/
799: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
800: {
802: TSIFunction ifunction;
803: TSRHSFunction rhsfunction;
804: void *ctx;
805: DM dm;
813: TSGetDM(ts,&dm);
814: DMTSGetIFunction(dm,&ifunction,&ctx);
815: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
817: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
819: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
820: if (ifunction) {
821: PetscStackPush("TS user implicit function");
822: (*ifunction)(ts,t,U,Udot,Y,ctx);
823: PetscStackPop;
824: }
825: if (imex) {
826: if (!ifunction) {
827: VecCopy(Udot,Y);
828: }
829: } else if (rhsfunction) {
830: if (ifunction) {
831: Vec Frhs;
832: TSGetRHSVec_Private(ts,&Frhs);
833: TSComputeRHSFunction(ts,t,U,Frhs);
834: VecAXPY(Y,-1,Frhs);
835: } else {
836: TSComputeRHSFunction(ts,t,U,Y);
837: VecAYPX(Y,-1,Udot);
838: }
839: }
840: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
841: return(0);
842: }
846: /*@
847: TSComputeIJacobian - Evaluates the Jacobian of the DAE
849: Collective on TS and Vec
851: Input
852: Input Parameters:
853: + ts - the TS context
854: . t - current timestep
855: . U - state vector
856: . Udot - time derivative of state vector
857: . shift - shift to apply, see note below
858: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
860: Output Parameters:
861: + A - Jacobian matrix
862: . B - optional preconditioning matrix
863: - flag - flag indicating matrix structure
865: Notes:
866: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
868: dF/dU + shift*dF/dUdot
870: Most users should not need to explicitly call this routine, as it
871: is used internally within the nonlinear solvers.
873: Level: developer
875: .keywords: TS, compute, Jacobian, matrix
877: .seealso: TSSetIJacobian()
878: @*/
879: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
880: {
882: TSIJacobian ijacobian;
883: TSRHSJacobian rhsjacobian;
884: DM dm;
885: void *ctx;
896: TSGetDM(ts,&dm);
897: DMTSGetIJacobian(dm,&ijacobian,&ctx);
898: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
900: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
902: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
903: if (ijacobian) {
904: PetscBool missing;
905: PetscStackPush("TS user implicit Jacobian");
906: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
907: PetscStackPop;
908: if (A) {
909: MatMissingDiagonal(A,&missing,NULL);
910: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
911: }
912: if (B && B != A) {
913: MatMissingDiagonal(B,&missing,NULL);
914: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
915: }
916: }
917: if (imex) {
918: if (!ijacobian) { /* system was written as Udot = G(t,U) */
919: MatZeroEntries(A);
920: MatShift(A,shift);
921: if (A != B) {
922: MatZeroEntries(B);
923: MatShift(B,shift);
924: }
925: }
926: } else {
927: Mat Arhs = NULL,Brhs = NULL;
928: if (rhsjacobian) {
929: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
930: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
931: }
932: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
933: ts->rhsjacobian.scale = -1;
934: ts->rhsjacobian.shift = shift;
935: MatScale(A,-1);
936: MatShift(A,shift);
937: if (A != B) {
938: MatScale(B,-1);
939: MatShift(B,shift);
940: }
941: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
942: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
943: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
944: MatZeroEntries(A);
945: MatShift(A,shift);
946: if (A != B) {
947: MatZeroEntries(B);
948: MatShift(B,shift);
949: }
950: }
951: MatAXPY(A,-1,Arhs,axpy);
952: if (A != B) {
953: MatAXPY(B,-1,Brhs,axpy);
954: }
955: }
956: }
957: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
958: return(0);
959: }
963: /*@C
964: TSSetRHSFunction - Sets the routine for evaluating the function,
965: where U_t = G(t,u).
967: Logically Collective on TS
969: Input Parameters:
970: + ts - the TS context obtained from TSCreate()
971: . r - vector to put the computed right hand side (or NULL to have it created)
972: . f - routine for evaluating the right-hand-side function
973: - ctx - [optional] user-defined context for private data for the
974: function evaluation routine (may be NULL)
976: Calling sequence of func:
977: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
979: + t - current timestep
980: . u - input vector
981: . F - function vector
982: - ctx - [optional] user-defined function context
984: Level: beginner
986: Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
988: .keywords: TS, timestep, set, right-hand-side, function
990: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
991: @*/
992: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
993: {
995: SNES snes;
996: Vec ralloc = NULL;
997: DM dm;
1003: TSGetDM(ts,&dm);
1004: DMTSSetRHSFunction(dm,f,ctx);
1005: TSGetSNES(ts,&snes);
1006: if (!r && !ts->dm && ts->vec_sol) {
1007: VecDuplicate(ts->vec_sol,&ralloc);
1008: r = ralloc;
1009: }
1010: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1011: VecDestroy(&ralloc);
1012: return(0);
1013: }
1017: /*@C
1018: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1020: Logically Collective on TS
1022: Input Parameters:
1023: + ts - the TS context obtained from TSCreate()
1024: . f - routine for evaluating the solution
1025: - ctx - [optional] user-defined context for private data for the
1026: function evaluation routine (may be NULL)
1028: Calling sequence of func:
1029: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1031: + t - current timestep
1032: . u - output vector
1033: - ctx - [optional] user-defined function context
1035: Notes:
1036: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1037: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1038: create closed-form solutions with non-physical forcing terms.
1040: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1042: Level: beginner
1044: .keywords: TS, timestep, set, right-hand-side, function
1046: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
1047: @*/
1048: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1049: {
1051: DM dm;
1055: TSGetDM(ts,&dm);
1056: DMTSSetSolutionFunction(dm,f,ctx);
1057: return(0);
1058: }
1062: /*@C
1063: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1065: Logically Collective on TS
1067: Input Parameters:
1068: + ts - the TS context obtained from TSCreate()
1069: . f - routine for evaluating the forcing function
1070: - ctx - [optional] user-defined context for private data for the
1071: function evaluation routine (may be NULL)
1073: Calling sequence of func:
1074: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1076: + t - current timestep
1077: . u - output vector
1078: - ctx - [optional] user-defined function context
1080: Notes:
1081: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1082: create closed-form solutions with a non-physical forcing term.
1084: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1086: Level: beginner
1088: .keywords: TS, timestep, set, right-hand-side, function
1090: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1091: @*/
1092: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction f,void *ctx)
1093: {
1095: DM dm;
1099: TSGetDM(ts,&dm);
1100: DMTSSetForcingFunction(dm,f,ctx);
1101: return(0);
1102: }
1106: /*@C
1107: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1108: where U_t = G(U,t), as well as the location to store the matrix.
1110: Logically Collective on TS
1112: Input Parameters:
1113: + ts - the TS context obtained from TSCreate()
1114: . Amat - (approximate) Jacobian matrix
1115: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1116: . f - the Jacobian evaluation routine
1117: - ctx - [optional] user-defined context for private data for the
1118: Jacobian evaluation routine (may be NULL)
1120: Calling sequence of f:
1121: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1123: + t - current timestep
1124: . u - input vector
1125: . Amat - (approximate) Jacobian matrix
1126: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1127: - ctx - [optional] user-defined context for matrix evaluation routine
1129: Notes:
1130: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1132: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1133: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1135: Level: beginner
1137: .keywords: TS, timestep, set, right-hand-side, Jacobian
1139: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1141: @*/
1142: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1143: {
1145: SNES snes;
1146: DM dm;
1147: TSIJacobian ijacobian;
1156: TSGetDM(ts,&dm);
1157: DMTSSetRHSJacobian(dm,f,ctx);
1158: if (f == TSComputeRHSJacobianConstant) {
1159: /* Handle this case automatically for the user; otherwise user should call themselves. */
1160: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1161: }
1162: DMTSGetIJacobian(dm,&ijacobian,NULL);
1163: TSGetSNES(ts,&snes);
1164: if (!ijacobian) {
1165: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1166: }
1167: if (Amat) {
1168: PetscObjectReference((PetscObject)Amat);
1169: MatDestroy(&ts->Arhs);
1170: ts->Arhs = Amat;
1171: }
1172: if (Pmat) {
1173: PetscObjectReference((PetscObject)Pmat);
1174: MatDestroy(&ts->Brhs);
1175: ts->Brhs = Pmat;
1176: }
1177: return(0);
1178: }
1183: /*@C
1184: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1186: Logically Collective on TS
1188: Input Parameters:
1189: + ts - the TS context obtained from TSCreate()
1190: . r - vector to hold the residual (or NULL to have it created internally)
1191: . f - the function evaluation routine
1192: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1194: Calling sequence of f:
1195: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1197: + t - time at step/stage being solved
1198: . u - state vector
1199: . u_t - time derivative of state vector
1200: . F - function vector
1201: - ctx - [optional] user-defined context for matrix evaluation routine
1203: Important:
1204: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1206: Level: beginner
1208: .keywords: TS, timestep, set, DAE, Jacobian
1210: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1211: @*/
1212: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1213: {
1215: SNES snes;
1216: Vec ralloc = NULL;
1217: DM dm;
1223: TSGetDM(ts,&dm);
1224: DMTSSetIFunction(dm,f,ctx);
1226: TSGetSNES(ts,&snes);
1227: if (!r && !ts->dm && ts->vec_sol) {
1228: VecDuplicate(ts->vec_sol,&ralloc);
1229: r = ralloc;
1230: }
1231: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1232: VecDestroy(&ralloc);
1233: return(0);
1234: }
1238: /*@C
1239: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1241: Not Collective
1243: Input Parameter:
1244: . ts - the TS context
1246: Output Parameter:
1247: + r - vector to hold residual (or NULL)
1248: . func - the function to compute residual (or NULL)
1249: - ctx - the function context (or NULL)
1251: Level: advanced
1253: .keywords: TS, nonlinear, get, function
1255: .seealso: TSSetIFunction(), SNESGetFunction()
1256: @*/
1257: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1258: {
1260: SNES snes;
1261: DM dm;
1265: TSGetSNES(ts,&snes);
1266: SNESGetFunction(snes,r,NULL,NULL);
1267: TSGetDM(ts,&dm);
1268: DMTSGetIFunction(dm,func,ctx);
1269: return(0);
1270: }
1274: /*@C
1275: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1277: Not Collective
1279: Input Parameter:
1280: . ts - the TS context
1282: Output Parameter:
1283: + r - vector to hold computed right hand side (or NULL)
1284: . func - the function to compute right hand side (or NULL)
1285: - ctx - the function context (or NULL)
1287: Level: advanced
1289: .keywords: TS, nonlinear, get, function
1291: .seealso: TSSetRHSFunction(), SNESGetFunction()
1292: @*/
1293: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1294: {
1296: SNES snes;
1297: DM dm;
1301: TSGetSNES(ts,&snes);
1302: SNESGetFunction(snes,r,NULL,NULL);
1303: TSGetDM(ts,&dm);
1304: DMTSGetRHSFunction(dm,func,ctx);
1305: return(0);
1306: }
1310: /*@C
1311: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1312: provided with TSSetIFunction().
1314: Logically Collective on TS
1316: Input Parameters:
1317: + ts - the TS context obtained from TSCreate()
1318: . Amat - (approximate) Jacobian matrix
1319: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1320: . f - the Jacobian evaluation routine
1321: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1323: Calling sequence of f:
1324: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1326: + t - time at step/stage being solved
1327: . U - state vector
1328: . U_t - time derivative of state vector
1329: . a - shift
1330: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1331: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1332: - ctx - [optional] user-defined context for matrix evaluation routine
1334: Notes:
1335: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1337: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1338: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1340: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1341: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1342: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1343: a and vector W depend on the integration method, step size, and past states. For example with
1344: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1345: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1347: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1349: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1350: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1352: Level: beginner
1354: .keywords: TS, timestep, DAE, Jacobian
1356: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1358: @*/
1359: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1360: {
1362: SNES snes;
1363: DM dm;
1372: TSGetDM(ts,&dm);
1373: DMTSSetIJacobian(dm,f,ctx);
1375: TSGetSNES(ts,&snes);
1376: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1377: return(0);
1378: }
1382: /*@
1383: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1384: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1385: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1386: not been changed by the TS.
1388: Logically Collective
1390: Input Arguments:
1391: + ts - TS context obtained from TSCreate()
1392: - reuse - PETSC_TRUE if the RHS Jacobian
1394: Level: intermediate
1396: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1397: @*/
1398: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1399: {
1401: ts->rhsjacobian.reuse = reuse;
1402: return(0);
1403: }
1407: /*@C
1408: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1410: Logically Collective on TS
1412: Input Parameters:
1413: + ts - the TS context obtained from TSCreate()
1414: . F - vector to hold the residual (or NULL to have it created internally)
1415: . fun - the function evaluation routine
1416: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1418: Calling sequence of fun:
1419: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1421: + t - time at step/stage being solved
1422: . U - state vector
1423: . U_t - time derivative of state vector
1424: . U_tt - second time derivative of state vector
1425: . F - function vector
1426: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1428: Level: beginner
1430: .keywords: TS, timestep, set, ODE, DAE, Function
1432: .seealso: TSSetI2Jacobian()
1433: @*/
1434: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1435: {
1436: DM dm;
1442: TSSetIFunction(ts,F,NULL,NULL);
1443: TSGetDM(ts,&dm);
1444: DMTSSetI2Function(dm,fun,ctx);
1445: return(0);
1446: }
1450: /*@C
1451: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1453: Not Collective
1455: Input Parameter:
1456: . ts - the TS context
1458: Output Parameter:
1459: + r - vector to hold residual (or NULL)
1460: . fun - the function to compute residual (or NULL)
1461: - ctx - the function context (or NULL)
1463: Level: advanced
1465: .keywords: TS, nonlinear, get, function
1467: .seealso: TSSetI2Function(), SNESGetFunction()
1468: @*/
1469: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1470: {
1472: SNES snes;
1473: DM dm;
1477: TSGetSNES(ts,&snes);
1478: SNESGetFunction(snes,r,NULL,NULL);
1479: TSGetDM(ts,&dm);
1480: DMTSGetI2Function(dm,fun,ctx);
1481: return(0);
1482: }
1486: /*@C
1487: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1488: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1490: Logically Collective on TS
1492: Input Parameters:
1493: + ts - the TS context obtained from TSCreate()
1494: . J - Jacobian matrix
1495: . P - preconditioning matrix for J (may be same as J)
1496: . jac - the Jacobian evaluation routine
1497: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1499: Calling sequence of jac:
1500: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1502: + t - time at step/stage being solved
1503: . U - state vector
1504: . U_t - time derivative of state vector
1505: . U_tt - second time derivative of state vector
1506: . v - shift for U_t
1507: . a - shift for U_tt
1508: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1509: . P - preconditioning matrix for J, may be same as J
1510: - ctx - [optional] user-defined context for matrix evaluation routine
1512: Notes:
1513: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1515: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1516: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1517: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1518: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1520: Level: beginner
1522: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1524: .seealso: TSSetI2Function()
1525: @*/
1526: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1527: {
1528: DM dm;
1535: TSSetIJacobian(ts,J,P,NULL,NULL);
1536: TSGetDM(ts,&dm);
1537: DMTSSetI2Jacobian(dm,jac,ctx);
1538: return(0);
1539: }
1543: /*@C
1544: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1546: Not Collective, but parallel objects are returned if TS is parallel
1548: Input Parameter:
1549: . ts - The TS context obtained from TSCreate()
1551: Output Parameters:
1552: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1553: . P - The matrix from which the preconditioner is constructed, often the same as J
1554: . jac - The function to compute the Jacobian matrices
1555: - ctx - User-defined context for Jacobian evaluation routine
1557: Notes: You can pass in NULL for any return argument you do not need.
1559: Level: advanced
1561: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
1563: .keywords: TS, timestep, get, matrix, Jacobian
1564: @*/
1565: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1566: {
1568: SNES snes;
1569: DM dm;
1572: TSGetSNES(ts,&snes);
1573: SNESSetUpMatrices(snes);
1574: SNESGetJacobian(snes,J,P,NULL,NULL);
1575: TSGetDM(ts,&dm);
1576: DMTSGetI2Jacobian(dm,jac,ctx);
1577: return(0);
1578: }
1582: /*@
1583: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1585: Collective on TS and Vec
1587: Input Parameters:
1588: + ts - the TS context
1589: . t - current time
1590: . U - state vector
1591: . V - time derivative of state vector (U_t)
1592: - A - second time derivative of state vector (U_tt)
1594: Output Parameter:
1595: . F - the residual vector
1597: Note:
1598: Most users should not need to explicitly call this routine, as it
1599: is used internally within the nonlinear solvers.
1601: Level: developer
1603: .keywords: TS, compute, function, vector
1605: .seealso: TSSetI2Function()
1606: @*/
1607: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1608: {
1609: DM dm;
1610: TSI2Function I2Function;
1611: void *ctx;
1612: TSRHSFunction rhsfunction;
1622: TSGetDM(ts,&dm);
1623: DMTSGetI2Function(dm,&I2Function,&ctx);
1624: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1626: if (!I2Function) {
1627: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1628: return(0);
1629: }
1631: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1633: PetscStackPush("TS user implicit function");
1634: I2Function(ts,t,U,V,A,F,ctx);
1635: PetscStackPop;
1637: if (rhsfunction) {
1638: Vec Frhs;
1639: TSGetRHSVec_Private(ts,&Frhs);
1640: TSComputeRHSFunction(ts,t,U,Frhs);
1641: VecAXPY(F,-1,Frhs);
1642: }
1644: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1645: return(0);
1646: }
1650: /*@
1651: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1653: Collective on TS and Vec
1655: Input Parameters:
1656: + ts - the TS context
1657: . t - current timestep
1658: . U - state vector
1659: . V - time derivative of state vector
1660: . A - second time derivative of state vector
1661: . shiftV - shift to apply, see note below
1662: - shiftA - shift to apply, see note below
1664: Output Parameters:
1665: + J - Jacobian matrix
1666: - P - optional preconditioning matrix
1668: Notes:
1669: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1671: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1673: Most users should not need to explicitly call this routine, as it
1674: is used internally within the nonlinear solvers.
1676: Level: developer
1678: .keywords: TS, compute, Jacobian, matrix
1680: .seealso: TSSetI2Jacobian()
1681: @*/
1682: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1683: {
1684: DM dm;
1685: TSI2Jacobian I2Jacobian;
1686: void *ctx;
1687: TSRHSJacobian rhsjacobian;
1698: TSGetDM(ts,&dm);
1699: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1700: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1702: if (!I2Jacobian) {
1703: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1704: return(0);
1705: }
1707: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1709: PetscStackPush("TS user implicit Jacobian");
1710: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1711: PetscStackPop;
1713: if (rhsjacobian) {
1714: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1715: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1716: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1717: MatAXPY(J,-1,Jrhs,axpy);
1718: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1719: }
1721: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1722: return(0);
1723: }
1727: /*@
1728: TS2SetSolution - Sets the initial solution and time derivative vectors
1729: for use by the TS routines handling second order equations.
1731: Logically Collective on TS and Vec
1733: Input Parameters:
1734: + ts - the TS context obtained from TSCreate()
1735: . u - the solution vector
1736: - v - the time derivative vector
1738: Level: beginner
1740: .keywords: TS, timestep, set, solution, initial conditions
1741: @*/
1742: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1743: {
1750: TSSetSolution(ts,u);
1751: PetscObjectReference((PetscObject)v);
1752: VecDestroy(&ts->vec_dot);
1753: ts->vec_dot = v;
1754: return(0);
1755: }
1759: /*@
1760: TS2GetSolution - Returns the solution and time derivative at the present timestep
1761: for second order equations. It is valid to call this routine inside the function
1762: that you are evaluating in order to move to the new timestep. This vector not
1763: changed until the solution at the next timestep has been calculated.
1765: Not Collective, but Vec returned is parallel if TS is parallel
1767: Input Parameter:
1768: . ts - the TS context obtained from TSCreate()
1770: Output Parameter:
1771: + u - the vector containing the solution
1772: - v - the vector containing the time derivative
1774: Level: intermediate
1776: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1778: .keywords: TS, timestep, get, solution
1779: @*/
1780: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1781: {
1786: if (u) *u = ts->vec_sol;
1787: if (v) *v = ts->vec_dot;
1788: return(0);
1789: }
1793: /*@C
1794: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1796: Collective on PetscViewer
1798: Input Parameters:
1799: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1800: some related function before a call to TSLoad().
1801: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1803: Level: intermediate
1805: Notes:
1806: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1808: Notes for advanced users:
1809: Most users should not need to know the details of the binary storage
1810: format, since TSLoad() and TSView() completely hide these details.
1811: But for anyone who's interested, the standard binary matrix storage
1812: format is
1813: .vb
1814: has not yet been determined
1815: .ve
1817: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1818: @*/
1819: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1820: {
1822: PetscBool isbinary;
1823: PetscInt classid;
1824: char type[256];
1825: DMTS sdm;
1826: DM dm;
1831: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1832: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1834: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1835: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1836: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1837: TSSetType(ts, type);
1838: if (ts->ops->load) {
1839: (*ts->ops->load)(ts,viewer);
1840: }
1841: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1842: DMLoad(dm,viewer);
1843: TSSetDM(ts,dm);
1844: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1845: VecLoad(ts->vec_sol,viewer);
1846: DMGetDMTS(ts->dm,&sdm);
1847: DMTSLoad(sdm,viewer);
1848: return(0);
1849: }
1851: #include <petscdraw.h>
1852: #if defined(PETSC_HAVE_SAWS)
1853: #include <petscviewersaws.h>
1854: #endif
1857: /*@C
1858: TSView - Prints the TS data structure.
1860: Collective on TS
1862: Input Parameters:
1863: + ts - the TS context obtained from TSCreate()
1864: - viewer - visualization context
1866: Options Database Key:
1867: . -ts_view - calls TSView() at end of TSStep()
1869: Notes:
1870: The available visualization contexts include
1871: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1872: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1873: output where only the first processor opens
1874: the file. All other processors send their
1875: data to the first processor to print.
1877: The user can open an alternative visualization context with
1878: PetscViewerASCIIOpen() - output to a specified file.
1880: Level: beginner
1882: .keywords: TS, timestep, view
1884: .seealso: PetscViewerASCIIOpen()
1885: @*/
1886: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1887: {
1889: TSType type;
1890: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1891: DMTS sdm;
1892: #if defined(PETSC_HAVE_SAWS)
1893: PetscBool issaws;
1894: #endif
1898: if (!viewer) {
1899: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1900: }
1904: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1905: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1906: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1907: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1908: #if defined(PETSC_HAVE_SAWS)
1909: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1910: #endif
1911: if (iascii) {
1912: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1913: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1914: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1915: if (ts->problem_type == TS_NONLINEAR) {
1916: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1917: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1918: }
1919: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1920: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1921: DMGetDMTS(ts->dm,&sdm);
1922: DMTSView(sdm,viewer);
1923: if (ts->ops->view) {
1924: PetscViewerASCIIPushTab(viewer);
1925: (*ts->ops->view)(ts,viewer);
1926: PetscViewerASCIIPopTab(viewer);
1927: }
1928: } else if (isstring) {
1929: TSGetType(ts,&type);
1930: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1931: } else if (isbinary) {
1932: PetscInt classid = TS_FILE_CLASSID;
1933: MPI_Comm comm;
1934: PetscMPIInt rank;
1935: char type[256];
1937: PetscObjectGetComm((PetscObject)ts,&comm);
1938: MPI_Comm_rank(comm,&rank);
1939: if (!rank) {
1940: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1941: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1942: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1943: }
1944: if (ts->ops->view) {
1945: (*ts->ops->view)(ts,viewer);
1946: }
1947: DMView(ts->dm,viewer);
1948: VecView(ts->vec_sol,viewer);
1949: DMGetDMTS(ts->dm,&sdm);
1950: DMTSView(sdm,viewer);
1951: } else if (isdraw) {
1952: PetscDraw draw;
1953: char str[36];
1954: PetscReal x,y,bottom,h;
1956: PetscViewerDrawGetDraw(viewer,0,&draw);
1957: PetscDrawGetCurrentPoint(draw,&x,&y);
1958: PetscStrcpy(str,"TS: ");
1959: PetscStrcat(str,((PetscObject)ts)->type_name);
1960: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1961: bottom = y - h;
1962: PetscDrawPushCurrentPoint(draw,x,bottom);
1963: if (ts->ops->view) {
1964: (*ts->ops->view)(ts,viewer);
1965: }
1966: PetscDrawPopCurrentPoint(draw);
1967: #if defined(PETSC_HAVE_SAWS)
1968: } else if (issaws) {
1969: PetscMPIInt rank;
1970: const char *name;
1972: PetscObjectGetName((PetscObject)ts,&name);
1973: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1974: if (!((PetscObject)ts)->amsmem && !rank) {
1975: char dir[1024];
1977: PetscObjectViewSAWs((PetscObject)ts,viewer);
1978: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
1979: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
1980: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
1981: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
1982: }
1983: if (ts->ops->view) {
1984: (*ts->ops->view)(ts,viewer);
1985: }
1986: #endif
1987: }
1989: PetscViewerASCIIPushTab(viewer);
1990: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1991: PetscViewerASCIIPopTab(viewer);
1992: return(0);
1993: }
1998: /*@
1999: TSSetApplicationContext - Sets an optional user-defined context for
2000: the timesteppers.
2002: Logically Collective on TS
2004: Input Parameters:
2005: + ts - the TS context obtained from TSCreate()
2006: - usrP - optional user context
2008: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2009: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2011: Level: intermediate
2013: .keywords: TS, timestep, set, application, context
2015: .seealso: TSGetApplicationContext()
2016: @*/
2017: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2018: {
2021: ts->user = usrP;
2022: return(0);
2023: }
2027: /*@
2028: TSGetApplicationContext - Gets the user-defined context for the
2029: timestepper.
2031: Not Collective
2033: Input Parameter:
2034: . ts - the TS context obtained from TSCreate()
2036: Output Parameter:
2037: . usrP - user context
2039: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2040: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2042: Level: intermediate
2044: .keywords: TS, timestep, get, application, context
2046: .seealso: TSSetApplicationContext()
2047: @*/
2048: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2049: {
2052: *(void**)usrP = ts->user;
2053: return(0);
2054: }
2058: /*@
2059: TSGetTimeStepNumber - Gets the number of time steps completed.
2061: Not Collective
2063: Input Parameter:
2064: . ts - the TS context obtained from TSCreate()
2066: Output Parameter:
2067: . iter - number of steps completed so far
2069: Level: intermediate
2071: .keywords: TS, timestep, get, iteration, number
2072: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2073: @*/
2074: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *iter)
2075: {
2079: *iter = ts->steps;
2080: return(0);
2081: }
2085: /*@
2086: TSSetInitialTimeStep - Sets the initial timestep to be used,
2087: as well as the initial time.
2089: Logically Collective on TS
2091: Input Parameters:
2092: + ts - the TS context obtained from TSCreate()
2093: . initial_time - the initial time
2094: - time_step - the size of the timestep
2096: Level: intermediate
2098: .seealso: TSSetTimeStep(), TSGetTimeStep()
2100: .keywords: TS, set, initial, timestep
2101: @*/
2102: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2103: {
2108: TSSetTimeStep(ts,time_step);
2109: TSSetTime(ts,initial_time);
2110: return(0);
2111: }
2115: /*@
2116: TSSetTimeStep - Allows one to reset the timestep at any time,
2117: useful for simple pseudo-timestepping codes.
2119: Logically Collective on TS
2121: Input Parameters:
2122: + ts - the TS context obtained from TSCreate()
2123: - time_step - the size of the timestep
2125: Level: intermediate
2127: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2129: .keywords: TS, set, timestep
2130: @*/
2131: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2132: {
2136: ts->time_step = time_step;
2137: return(0);
2138: }
2142: /*@
2143: TSSetExactFinalTime - Determines whether to adapt the final time step to
2144: match the exact final time, interpolate solution to the exact final time,
2145: or just return at the final time TS computed.
2147: Logically Collective on TS
2149: Input Parameter:
2150: + ts - the time-step context
2151: - eftopt - exact final time option
2153: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2154: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2155: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2157: Options Database:
2158: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2160: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2161: then the final time you selected.
2163: Level: beginner
2165: .seealso: TSExactFinalTimeOption
2166: @*/
2167: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2168: {
2172: ts->exact_final_time = eftopt;
2173: return(0);
2174: }
2178: /*@
2179: TSGetTimeStep - Gets the current timestep size.
2181: Not Collective
2183: Input Parameter:
2184: . ts - the TS context obtained from TSCreate()
2186: Output Parameter:
2187: . dt - the current timestep size
2189: Level: intermediate
2191: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2193: .keywords: TS, get, timestep
2194: @*/
2195: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2196: {
2200: *dt = ts->time_step;
2201: return(0);
2202: }
2206: /*@
2207: TSGetSolution - Returns the solution at the present timestep. It
2208: is valid to call this routine inside the function that you are evaluating
2209: in order to move to the new timestep. This vector not changed until
2210: the solution at the next timestep has been calculated.
2212: Not Collective, but Vec returned is parallel if TS is parallel
2214: Input Parameter:
2215: . ts - the TS context obtained from TSCreate()
2217: Output Parameter:
2218: . v - the vector containing the solution
2220: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2221: final time. It returns the solution at the next timestep.
2223: Level: intermediate
2225: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime()
2227: .keywords: TS, timestep, get, solution
2228: @*/
2229: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2230: {
2234: *v = ts->vec_sol;
2235: return(0);
2236: }
2240: /*@
2241: TSGetCostGradients - Returns the gradients from the TSAdjointSolve()
2243: Not Collective, but Vec returned is parallel if TS is parallel
2245: Input Parameter:
2246: . ts - the TS context obtained from TSCreate()
2248: Output Parameter:
2249: + lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
2250: - mu - vectors containing the gradients of the cost functions with respect to the problem parameters
2252: Level: intermediate
2254: .seealso: TSGetTimeStep()
2256: .keywords: TS, timestep, get, sensitivity
2257: @*/
2258: PetscErrorCode TSGetCostGradients(TS ts,PetscInt *numcost,Vec **lambda,Vec **mu)
2259: {
2262: if (numcost) *numcost = ts->numcost;
2263: if (lambda) *lambda = ts->vecs_sensi;
2264: if (mu) *mu = ts->vecs_sensip;
2265: return(0);
2266: }
2268: /* ----- Routines to initialize and destroy a timestepper ---- */
2271: /*@
2272: TSSetProblemType - Sets the type of problem to be solved.
2274: Not collective
2276: Input Parameters:
2277: + ts - The TS
2278: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2279: .vb
2280: U_t - A U = 0 (linear)
2281: U_t - A(t) U = 0 (linear)
2282: F(t,U,U_t) = 0 (nonlinear)
2283: .ve
2285: Level: beginner
2287: .keywords: TS, problem type
2288: .seealso: TSSetUp(), TSProblemType, TS
2289: @*/
2290: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2291: {
2296: ts->problem_type = type;
2297: if (type == TS_LINEAR) {
2298: SNES snes;
2299: TSGetSNES(ts,&snes);
2300: SNESSetType(snes,SNESKSPONLY);
2301: }
2302: return(0);
2303: }
2307: /*@C
2308: TSGetProblemType - Gets the type of problem to be solved.
2310: Not collective
2312: Input Parameter:
2313: . ts - The TS
2315: Output Parameter:
2316: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2317: .vb
2318: M U_t = A U
2319: M(t) U_t = A(t) U
2320: F(t,U,U_t)
2321: .ve
2323: Level: beginner
2325: .keywords: TS, problem type
2326: .seealso: TSSetUp(), TSProblemType, TS
2327: @*/
2328: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2329: {
2333: *type = ts->problem_type;
2334: return(0);
2335: }
2339: /*@
2340: TSSetUp - Sets up the internal data structures for the later use
2341: of a timestepper.
2343: Collective on TS
2345: Input Parameter:
2346: . ts - the TS context obtained from TSCreate()
2348: Notes:
2349: For basic use of the TS solvers the user need not explicitly call
2350: TSSetUp(), since these actions will automatically occur during
2351: the call to TSStep(). However, if one wishes to control this
2352: phase separately, TSSetUp() should be called after TSCreate()
2353: and optional routines of the form TSSetXXX(), but before TSStep().
2355: Level: advanced
2357: .keywords: TS, timestep, setup
2359: .seealso: TSCreate(), TSStep(), TSDestroy()
2360: @*/
2361: PetscErrorCode TSSetUp(TS ts)
2362: {
2364: DM dm;
2365: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2366: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2367: TSIFunction ifun;
2368: TSIJacobian ijac;
2369: TSI2Jacobian i2jac;
2370: TSRHSJacobian rhsjac;
2374: if (ts->setupcalled) return(0);
2376: ts->total_steps = 0;
2377: if (!((PetscObject)ts)->type_name) {
2378: TSGetIFunction(ts,NULL,&ifun,NULL);
2379: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2380: }
2382: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2384: if (ts->rhsjacobian.reuse) {
2385: Mat Amat,Pmat;
2386: SNES snes;
2387: TSGetSNES(ts,&snes);
2388: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2389: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2390: * have displaced the RHS matrix */
2391: if (Amat == ts->Arhs) {
2392: MatDuplicate(ts->Arhs,MAT_DO_NOT_COPY_VALUES,&Amat);
2393: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2394: MatDestroy(&Amat);
2395: }
2396: if (Pmat == ts->Brhs) {
2397: MatDuplicate(ts->Brhs,MAT_DO_NOT_COPY_VALUES,&Pmat);
2398: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2399: MatDestroy(&Pmat);
2400: }
2401: }
2402: if (ts->ops->setup) {
2403: (*ts->ops->setup)(ts);
2404: }
2406: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2407: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2408: */
2409: TSGetDM(ts,&dm);
2410: DMSNESGetFunction(dm,&func,NULL);
2411: if (!func) {
2412: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2413: }
2414: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2415: Otherwise, the SNES will use coloring internally to form the Jacobian.
2416: */
2417: DMSNESGetJacobian(dm,&jac,NULL);
2418: DMTSGetIJacobian(dm,&ijac,NULL);
2419: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2420: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2421: if (!jac && (ijac || i2jac || rhsjac)) {
2422: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2423: }
2424: ts->setupcalled = PETSC_TRUE;
2425: return(0);
2426: }
2430: /*@
2431: TSAdjointSetUp - Sets up the internal data structures for the later use
2432: of an adjoint solver
2434: Collective on TS
2436: Input Parameter:
2437: . ts - the TS context obtained from TSCreate()
2439: Level: advanced
2441: .keywords: TS, timestep, setup
2443: .seealso: TSCreate(), TSAdjointStep(), TSSetCostGradients()
2444: @*/
2445: PetscErrorCode TSAdjointSetUp(TS ts)
2446: {
2451: if (ts->adjointsetupcalled) return(0);
2452: if (!ts->vecs_sensi) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetCostGradients() first");
2454: if (ts->vec_costintegral) { /* if there is integral in the cost function*/
2455: VecDuplicateVecs(ts->vecs_sensi[0],ts->numcost,&ts->vecs_drdy);
2456: if (ts->vecs_sensip){
2457: VecDuplicateVecs(ts->vecs_sensip[0],ts->numcost,&ts->vecs_drdp);
2458: }
2459: }
2461: if (ts->ops->adjointsetup) {
2462: (*ts->ops->adjointsetup)(ts);
2463: }
2464: ts->adjointsetupcalled = PETSC_TRUE;
2465: return(0);
2466: }
2470: /*@
2471: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2473: Collective on TS
2475: Input Parameter:
2476: . ts - the TS context obtained from TSCreate()
2478: Level: beginner
2480: .keywords: TS, timestep, reset
2482: .seealso: TSCreate(), TSSetup(), TSDestroy()
2483: @*/
2484: PetscErrorCode TSReset(TS ts)
2485: {
2491: if (ts->ops->reset) {
2492: (*ts->ops->reset)(ts);
2493: }
2494: if (ts->snes) {SNESReset(ts->snes);}
2495: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2497: MatDestroy(&ts->Arhs);
2498: MatDestroy(&ts->Brhs);
2499: VecDestroy(&ts->Frhs);
2500: VecDestroy(&ts->vec_sol);
2501: VecDestroy(&ts->vec_dot);
2502: VecDestroy(&ts->vatol);
2503: VecDestroy(&ts->vrtol);
2504: VecDestroyVecs(ts->nwork,&ts->work);
2506: if (ts->vec_costintegral) {
2507: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2508: if (ts->vecs_drdp){
2509: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2510: }
2511: }
2512: ts->vecs_sensi = NULL;
2513: ts->vecs_sensip = NULL;
2514: MatDestroy(&ts->Jacp);
2515: VecDestroy(&ts->vec_costintegral);
2516: VecDestroy(&ts->vec_costintegrand);
2517: ts->setupcalled = PETSC_FALSE;
2518: return(0);
2519: }
2523: /*@
2524: TSDestroy - Destroys the timestepper context that was created
2525: with TSCreate().
2527: Collective on TS
2529: Input Parameter:
2530: . ts - the TS context obtained from TSCreate()
2532: Level: beginner
2534: .keywords: TS, timestepper, destroy
2536: .seealso: TSCreate(), TSSetUp(), TSSolve()
2537: @*/
2538: PetscErrorCode TSDestroy(TS *ts)
2539: {
2543: if (!*ts) return(0);
2545: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2547: TSReset((*ts));
2549: /* if memory was published with SAWs then destroy it */
2550: PetscObjectSAWsViewOff((PetscObject)*ts);
2551: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2553: TSTrajectoryDestroy(&(*ts)->trajectory);
2555: TSAdaptDestroy(&(*ts)->adapt);
2556: TSEventDestroy(&(*ts)->event);
2558: SNESDestroy(&(*ts)->snes);
2559: DMDestroy(&(*ts)->dm);
2560: TSMonitorCancel((*ts));
2561: TSAdjointMonitorCancel((*ts));
2563: PetscHeaderDestroy(ts);
2564: return(0);
2565: }
2569: /*@
2570: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2571: a TS (timestepper) context. Valid only for nonlinear problems.
2573: Not Collective, but SNES is parallel if TS is parallel
2575: Input Parameter:
2576: . ts - the TS context obtained from TSCreate()
2578: Output Parameter:
2579: . snes - the nonlinear solver context
2581: Notes:
2582: The user can then directly manipulate the SNES context to set various
2583: options, etc. Likewise, the user can then extract and manipulate the
2584: KSP, KSP, and PC contexts as well.
2586: TSGetSNES() does not work for integrators that do not use SNES; in
2587: this case TSGetSNES() returns NULL in snes.
2589: Level: beginner
2591: .keywords: timestep, get, SNES
2592: @*/
2593: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2594: {
2600: if (!ts->snes) {
2601: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2602: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2603: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2604: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2605: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2606: if (ts->problem_type == TS_LINEAR) {
2607: SNESSetType(ts->snes,SNESKSPONLY);
2608: }
2609: }
2610: *snes = ts->snes;
2611: return(0);
2612: }
2616: /*@
2617: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2619: Collective
2621: Input Parameter:
2622: + ts - the TS context obtained from TSCreate()
2623: - snes - the nonlinear solver context
2625: Notes:
2626: Most users should have the TS created by calling TSGetSNES()
2628: Level: developer
2630: .keywords: timestep, set, SNES
2631: @*/
2632: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2633: {
2635: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2640: PetscObjectReference((PetscObject)snes);
2641: SNESDestroy(&ts->snes);
2643: ts->snes = snes;
2645: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2646: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2647: if (func == SNESTSFormJacobian) {
2648: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2649: }
2650: return(0);
2651: }
2655: /*@
2656: TSGetKSP - Returns the KSP (linear solver) associated with
2657: a TS (timestepper) context.
2659: Not Collective, but KSP is parallel if TS is parallel
2661: Input Parameter:
2662: . ts - the TS context obtained from TSCreate()
2664: Output Parameter:
2665: . ksp - the nonlinear solver context
2667: Notes:
2668: The user can then directly manipulate the KSP context to set various
2669: options, etc. Likewise, the user can then extract and manipulate the
2670: KSP and PC contexts as well.
2672: TSGetKSP() does not work for integrators that do not use KSP;
2673: in this case TSGetKSP() returns NULL in ksp.
2675: Level: beginner
2677: .keywords: timestep, get, KSP
2678: @*/
2679: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2680: {
2682: SNES snes;
2687: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2688: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2689: TSGetSNES(ts,&snes);
2690: SNESGetKSP(snes,ksp);
2691: return(0);
2692: }
2694: /* ----------- Routines to set solver parameters ---------- */
2698: /*@
2699: TSGetDuration - Gets the maximum number of timesteps to use and
2700: maximum time for iteration.
2702: Not Collective
2704: Input Parameters:
2705: + ts - the TS context obtained from TSCreate()
2706: . maxsteps - maximum number of iterations to use, or NULL
2707: - maxtime - final time to iterate to, or NULL
2709: Level: intermediate
2711: .keywords: TS, timestep, get, maximum, iterations, time
2712: @*/
2713: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2714: {
2717: if (maxsteps) {
2719: *maxsteps = ts->max_steps;
2720: }
2721: if (maxtime) {
2723: *maxtime = ts->max_time;
2724: }
2725: return(0);
2726: }
2730: /*@
2731: TSSetDuration - Sets the maximum number of timesteps to use and
2732: maximum time for iteration.
2734: Logically Collective on TS
2736: Input Parameters:
2737: + ts - the TS context obtained from TSCreate()
2738: . maxsteps - maximum number of iterations to use
2739: - maxtime - final time to iterate to
2741: Options Database Keys:
2742: . -ts_max_steps <maxsteps> - Sets maxsteps
2743: . -ts_final_time <maxtime> - Sets maxtime
2745: Notes:
2746: The default maximum number of iterations is 5000. Default time is 5.0
2748: Level: intermediate
2750: .keywords: TS, timestep, set, maximum, iterations
2752: .seealso: TSSetExactFinalTime()
2753: @*/
2754: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2755: {
2760: if (maxsteps >= 0) ts->max_steps = maxsteps;
2761: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2762: return(0);
2763: }
2767: /*@
2768: TSSetSolution - Sets the initial solution vector
2769: for use by the TS routines.
2771: Logically Collective on TS and Vec
2773: Input Parameters:
2774: + ts - the TS context obtained from TSCreate()
2775: - u - the solution vector
2777: Level: beginner
2779: .keywords: TS, timestep, set, solution, initial conditions
2780: @*/
2781: PetscErrorCode TSSetSolution(TS ts,Vec u)
2782: {
2784: DM dm;
2789: PetscObjectReference((PetscObject)u);
2790: VecDestroy(&ts->vec_sol);
2791: ts->vec_sol = u;
2793: TSGetDM(ts,&dm);
2794: DMShellSetGlobalVector(dm,u);
2795: return(0);
2796: }
2800: /*@
2801: TSAdjointSetSteps - Sets the number of steps the adjoint solver should take backward in time
2803: Logically Collective on TS
2805: Input Parameters:
2806: + ts - the TS context obtained from TSCreate()
2807: . steps - number of steps to use
2809: Level: intermediate
2811: Notes: Normally one does not call this and TSAdjointSolve() integrates back to the original timestep. One can call this
2812: so as to integrate back to less than the original timestep
2814: .keywords: TS, timestep, set, maximum, iterations
2816: .seealso: TSSetExactFinalTime()
2817: @*/
2818: PetscErrorCode TSAdjointSetSteps(TS ts,PetscInt steps)
2819: {
2823: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back a negative number of steps");
2824: if (steps > ts->total_steps) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back more than the total number of forward steps");
2825: ts->adjoint_max_steps = steps;
2826: return(0);
2827: }
2831: /*@
2832: TSSetCostGradients - Sets the initial value of the gradients of the cost function w.r.t. initial conditions and w.r.t. the problem parameters
2833: for use by the TSAdjoint routines.
2835: Logically Collective on TS and Vec
2837: Input Parameters:
2838: + ts - the TS context obtained from TSCreate()
2839: . lambda - gradients with respect to the initial condition variables, the dimension and parallel layout of these vectors is the same as the ODE solution vector
2840: - mu - gradients with respect to the parameters, the number of entries in these vectors is the same as the number of parameters
2842: Level: beginner
2844: Notes: the entries in these vectors must be correctly initialized with the values lamda_i = df/dy|finaltime mu_i = df/dp|finaltime
2846: .keywords: TS, timestep, set, sensitivity, initial conditions
2847: @*/
2848: PetscErrorCode TSSetCostGradients(TS ts,PetscInt numcost,Vec *lambda,Vec *mu)
2849: {
2853: ts->vecs_sensi = lambda;
2854: ts->vecs_sensip = mu;
2855: if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostIntegrand");
2856: ts->numcost = numcost;
2857: return(0);
2858: }
2862: /*@C
2863: TSAdjointSetRHSJacobian - Sets the function that computes the Jacobian of G w.r.t. the parameters p where y_t = G(y,p,t), as well as the location to store the matrix.
2865: Logically Collective on TS
2867: Input Parameters:
2868: + ts - The TS context obtained from TSCreate()
2869: - func - The function
2871: Calling sequence of func:
2872: $ func (TS ts,PetscReal t,Vec y,Mat A,void *ctx);
2873: + t - current timestep
2874: . y - input vector (current ODE solution)
2875: . A - output matrix
2876: - ctx - [optional] user-defined function context
2878: Level: intermediate
2880: Notes: Amat has the same number of rows and the same row parallel layout as u, Amat has the same number of columns and parallel layout as p
2882: .keywords: TS, sensitivity
2883: .seealso:
2884: @*/
2885: PetscErrorCode TSAdjointSetRHSJacobian(TS ts,Mat Amat,PetscErrorCode (*func)(TS,PetscReal,Vec,Mat,void*),void *ctx)
2886: {
2893: ts->rhsjacobianp = func;
2894: ts->rhsjacobianpctx = ctx;
2895: if(Amat) {
2896: PetscObjectReference((PetscObject)Amat);
2897: MatDestroy(&ts->Jacp);
2898: ts->Jacp = Amat;
2899: }
2900: return(0);
2901: }
2905: /*@C
2906: TSAdjointComputeRHSJacobian - Runs the user-defined Jacobian function.
2908: Collective on TS
2910: Input Parameters:
2911: . ts - The TS context obtained from TSCreate()
2913: Level: developer
2915: .keywords: TS, sensitivity
2916: .seealso: TSAdjointSetRHSJacobian()
2917: @*/
2918: PetscErrorCode TSAdjointComputeRHSJacobian(TS ts,PetscReal t,Vec X,Mat Amat)
2919: {
2927: PetscStackPush("TS user JacobianP function for sensitivity analysis");
2928: (*ts->rhsjacobianp)(ts,t,X,Amat,ts->rhsjacobianpctx);
2929: PetscStackPop;
2930: return(0);
2931: }
2935: /*@C
2936: TSSetCostIntegrand - Sets the routine for evaluating the integral term in one or more cost functions
2938: Logically Collective on TS
2940: Input Parameters:
2941: + ts - the TS context obtained from TSCreate()
2942: . numcost - number of gradients to be computed, this is the number of cost functions
2943: . rf - routine for evaluating the integrand function
2944: . drdyf - function that computes the gradients of the r's with respect to y,NULL if not a function y
2945: . drdpf - function that computes the gradients of the r's with respect to p, NULL if not a function of p
2946: . fwd ï¼ flag indicating whether to evaluate cost integral in the forward run or the adjoint run
2947: - ctx - [optional] user-defined context for private data for the function evaluation routine (may be NULL)
2949: Calling sequence of rf:
2950: $ rf(TS ts,PetscReal t,Vec y,Vec f[],void *ctx);
2952: + t - current timestep
2953: . y - input vector
2954: . f - function result; one vector entry for each cost function
2955: - ctx - [optional] user-defined function context
2957: Calling sequence of drdyf:
2958: $ PetscErroCode drdyf(TS ts,PetscReal t,Vec y,Vec *drdy,void *ctx);
2960: Calling sequence of drdpf:
2961: $ PetscErroCode drdpf(TS ts,PetscReal t,Vec y,Vec *drdp,void *ctx);
2963: Level: intermediate
2965: Notes: For optimization there is generally a single cost function, numcost = 1. For sensitivities there may be multiple cost functions
2967: .keywords: TS, sensitivity analysis, timestep, set, quadrature, function
2969: .seealso: TSAdjointSetRHSJacobian(),TSGetCostGradients(), TSSetCostGradients()
2970: @*/
2971: PetscErrorCode TSSetCostIntegrand(TS ts,PetscInt numcost,PetscErrorCode (*rf)(TS,PetscReal,Vec,Vec,void*),
2972: PetscErrorCode (*drdyf)(TS,PetscReal,Vec,Vec*,void*),
2973: PetscErrorCode (*drdpf)(TS,PetscReal,Vec,Vec*,void*),
2974: PetscBool fwd,void *ctx)
2975: {
2980: if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostGradients()");
2981: if (!ts->numcost) ts->numcost=numcost;
2983: ts->costintegralfwd = fwd; /* Evaluate the cost integral in forward run if fwd is true */
2984: VecCreateSeq(PETSC_COMM_SELF,numcost,&ts->vec_costintegral);
2985: VecDuplicate(ts->vec_costintegral,&ts->vec_costintegrand);
2986: ts->costintegrand = rf;
2987: ts->costintegrandctx = ctx;
2988: ts->drdyfunction = drdyf;
2989: ts->drdpfunction = drdpf;
2990: return(0);
2991: }
2995: /*@
2996: TSGetCostIntegral - Returns the values of the integral term in the cost functions.
2997: It is valid to call the routine after a backward run.
2999: Not Collective
3001: Input Parameter:
3002: . ts - the TS context obtained from TSCreate()
3004: Output Parameter:
3005: . v - the vector containing the integrals for each cost function
3007: Level: intermediate
3009: .seealso: TSSetCostIntegrand()
3011: .keywords: TS, sensitivity analysis
3012: @*/
3013: PetscErrorCode TSGetCostIntegral(TS ts,Vec *v)
3014: {
3018: *v = ts->vec_costintegral;
3019: return(0);
3020: }
3024: /*@
3025: TSAdjointComputeCostIntegrand - Evaluates the integral function in the cost functions.
3027: Input Parameters:
3028: + ts - the TS context
3029: . t - current time
3030: - y - state vector, i.e. current solution
3032: Output Parameter:
3033: . q - vector of size numcost to hold the outputs
3035: Note:
3036: Most users should not need to explicitly call this routine, as it
3037: is used internally within the sensitivity analysis context.
3039: Level: developer
3041: .keywords: TS, compute
3043: .seealso: TSSetCostIntegrand()
3044: @*/
3045: PetscErrorCode TSAdjointComputeCostIntegrand(TS ts,PetscReal t,Vec y,Vec q)
3046: {
3054: PetscLogEventBegin(TS_FunctionEval,ts,y,q,0);
3055: if (ts->costintegrand) {
3056: PetscStackPush("TS user integrand in the cost function");
3057: (*ts->costintegrand)(ts,t,y,q,ts->costintegrandctx);
3058: PetscStackPop;
3059: } else {
3060: VecZeroEntries(q);
3061: }
3063: PetscLogEventEnd(TS_FunctionEval,ts,y,q,0);
3064: return(0);
3065: }
3069: /*@
3070: TSAdjointComputeDRDYFunction - Runs the user-defined DRDY function.
3072: Collective on TS
3074: Input Parameters:
3075: . ts - The TS context obtained from TSCreate()
3077: Notes:
3078: TSAdjointComputeDRDYFunction() is typically used for sensitivity implementation,
3079: so most users would not generally call this routine themselves.
3081: Level: developer
3083: .keywords: TS, sensitivity
3084: .seealso: TSAdjointComputeDRDYFunction()
3085: @*/
3086: PetscErrorCode TSAdjointComputeDRDYFunction(TS ts,PetscReal t,Vec y,Vec *drdy)
3087: {
3094: PetscStackPush("TS user DRDY function for sensitivity analysis");
3095: (*ts->drdyfunction)(ts,t,y,drdy,ts->costintegrandctx);
3096: PetscStackPop;
3097: return(0);
3098: }
3102: /*@
3103: TSAdjointComputeDRDPFunction - Runs the user-defined DRDP function.
3105: Collective on TS
3107: Input Parameters:
3108: . ts - The TS context obtained from TSCreate()
3110: Notes:
3111: TSDRDPFunction() is typically used for sensitivity implementation,
3112: so most users would not generally call this routine themselves.
3114: Level: developer
3116: .keywords: TS, sensitivity
3117: .seealso: TSAdjointSetDRDPFunction()
3118: @*/
3119: PetscErrorCode TSAdjointComputeDRDPFunction(TS ts,PetscReal t,Vec y,Vec *drdp)
3120: {
3127: PetscStackPush("TS user DRDP function for sensitivity analysis");
3128: (*ts->drdpfunction)(ts,t,y,drdp,ts->costintegrandctx);
3129: PetscStackPop;
3130: return(0);
3131: }
3135: /*@C
3136: TSSetPreStep - Sets the general-purpose function
3137: called once at the beginning of each time step.
3139: Logically Collective on TS
3141: Input Parameters:
3142: + ts - The TS context obtained from TSCreate()
3143: - func - The function
3145: Calling sequence of func:
3146: . func (TS ts);
3148: Level: intermediate
3150: Note:
3151: If a step is rejected, TSStep() will call this routine again before each attempt.
3152: The last completed time step number can be queried using TSGetTimeStepNumber(), the
3153: size of the step being attempted can be obtained using TSGetTimeStep().
3155: .keywords: TS, timestep
3156: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep()
3157: @*/
3158: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3159: {
3162: ts->prestep = func;
3163: return(0);
3164: }
3168: /*@
3169: TSPreStep - Runs the user-defined pre-step function.
3171: Collective on TS
3173: Input Parameters:
3174: . ts - The TS context obtained from TSCreate()
3176: Notes:
3177: TSPreStep() is typically used within time stepping implementations,
3178: so most users would not generally call this routine themselves.
3180: Level: developer
3182: .keywords: TS, timestep
3183: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3184: @*/
3185: PetscErrorCode TSPreStep(TS ts)
3186: {
3191: if (ts->prestep) {
3192: PetscStackCallStandard((*ts->prestep),(ts));
3193: }
3194: return(0);
3195: }
3199: /*@C
3200: TSSetPreStage - Sets the general-purpose function
3201: called once at the beginning of each stage.
3203: Logically Collective on TS
3205: Input Parameters:
3206: + ts - The TS context obtained from TSCreate()
3207: - func - The function
3209: Calling sequence of func:
3210: . PetscErrorCode func(TS ts, PetscReal stagetime);
3212: Level: intermediate
3214: Note:
3215: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3216: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
3217: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3219: .keywords: TS, timestep
3220: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3221: @*/
3222: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3223: {
3226: ts->prestage = func;
3227: return(0);
3228: }
3232: /*@C
3233: TSSetPostStage - Sets the general-purpose function
3234: called once at the end of each stage.
3236: Logically Collective on TS
3238: Input Parameters:
3239: + ts - The TS context obtained from TSCreate()
3240: - func - The function
3242: Calling sequence of func:
3243: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3245: Level: intermediate
3247: Note:
3248: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3249: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
3250: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3252: .keywords: TS, timestep
3253: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3254: @*/
3255: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3256: {
3259: ts->poststage = func;
3260: return(0);
3261: }
3265: /*@
3266: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3268: Collective on TS
3270: Input Parameters:
3271: . ts - The TS context obtained from TSCreate()
3272: stagetime - The absolute time of the current stage
3274: Notes:
3275: TSPreStage() is typically used within time stepping implementations,
3276: most users would not generally call this routine themselves.
3278: Level: developer
3280: .keywords: TS, timestep
3281: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3282: @*/
3283: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3284: {
3289: if (ts->prestage) {
3290: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3291: }
3292: return(0);
3293: }
3297: /*@
3298: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3300: Collective on TS
3302: Input Parameters:
3303: . ts - The TS context obtained from TSCreate()
3304: stagetime - The absolute time of the current stage
3305: stageindex - Stage number
3306: Y - Array of vectors (of size = total number
3307: of stages) with the stage solutions
3309: Notes:
3310: TSPostStage() is typically used within time stepping implementations,
3311: most users would not generally call this routine themselves.
3313: Level: developer
3315: .keywords: TS, timestep
3316: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3317: @*/
3318: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3319: {
3324: if (ts->poststage) {
3325: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3326: }
3327: return(0);
3328: }
3332: /*@C
3333: TSSetPostStep - Sets the general-purpose function
3334: called once at the end of each time step.
3336: Logically Collective on TS
3338: Input Parameters:
3339: + ts - The TS context obtained from TSCreate()
3340: - func - The function
3342: Calling sequence of func:
3343: $ func (TS ts);
3345: Level: intermediate
3347: .keywords: TS, timestep
3348: .seealso: TSSetPreStep(), TSSetPreStage(), TSGetTimeStep(), TSGetTimeStepNumber(), TSGetTime()
3349: @*/
3350: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3351: {
3354: ts->poststep = func;
3355: return(0);
3356: }
3360: /*@
3361: TSPostStep - Runs the user-defined post-step function.
3363: Collective on TS
3365: Input Parameters:
3366: . ts - The TS context obtained from TSCreate()
3368: Notes:
3369: TSPostStep() is typically used within time stepping implementations,
3370: so most users would not generally call this routine themselves.
3372: Level: developer
3374: .keywords: TS, timestep
3375: @*/
3376: PetscErrorCode TSPostStep(TS ts)
3377: {
3382: if (ts->poststep) {
3383: PetscStackCallStandard((*ts->poststep),(ts));
3384: }
3385: return(0);
3386: }
3388: /* ------------ Routines to set performance monitoring options ----------- */
3392: /*@C
3393: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3394: timestep to display the iteration's progress.
3396: Logically Collective on TS
3398: Input Parameters:
3399: + ts - the TS context obtained from TSCreate()
3400: . monitor - monitoring routine
3401: . mctx - [optional] user-defined context for private data for the
3402: monitor routine (use NULL if no context is desired)
3403: - monitordestroy - [optional] routine that frees monitor context
3404: (may be NULL)
3406: Calling sequence of monitor:
3407: $ int monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3409: + ts - the TS context
3410: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3411: . time - current time
3412: . u - current iterate
3413: - mctx - [optional] monitoring context
3415: Notes:
3416: This routine adds an additional monitor to the list of monitors that
3417: already has been loaded.
3419: Fortran notes: Only a single monitor function can be set for each TS object
3421: Level: intermediate
3423: .keywords: TS, timestep, set, monitor
3425: .seealso: TSMonitorDefault(), TSMonitorCancel()
3426: @*/
3427: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3428: {
3430: PetscInt i;
3431: PetscBool identical;
3432:
3435: for (i=0; i<ts->numbermonitors;i++) {
3436: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3437: if (identical) return(0);
3438: }
3439: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3440: ts->monitor[ts->numbermonitors] = monitor;
3441: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3442: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3443: return(0);
3444: }
3448: /*@C
3449: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3451: Logically Collective on TS
3453: Input Parameters:
3454: . ts - the TS context obtained from TSCreate()
3456: Notes:
3457: There is no way to remove a single, specific monitor.
3459: Level: intermediate
3461: .keywords: TS, timestep, set, monitor
3463: .seealso: TSMonitorDefault(), TSMonitorSet()
3464: @*/
3465: PetscErrorCode TSMonitorCancel(TS ts)
3466: {
3468: PetscInt i;
3472: for (i=0; i<ts->numbermonitors; i++) {
3473: if (ts->monitordestroy[i]) {
3474: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3475: }
3476: }
3477: ts->numbermonitors = 0;
3478: return(0);
3479: }
3483: /*@C
3484: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3486: Level: intermediate
3488: .keywords: TS, set, monitor
3490: .seealso: TSMonitorSet()
3491: @*/
3492: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3493: {
3495: PetscViewer viewer = vf->viewer;
3496: PetscBool iascii,ibinary;
3500: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3501: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3502: PetscViewerPushFormat(viewer,vf->format);
3503: if (iascii) {
3504: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3505: if (step == -1){ /* this indicates it is an interpolated solution */
3506: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3507: } else {
3508: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3509: }
3510: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3511: } else if (ibinary) {
3512: PetscMPIInt rank;
3513: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3514: if (!rank) {
3515: PetscRealView(1,&ptime,viewer);
3516: } else {
3517: PetscRealView(0,&ptime,viewer);
3518: }
3519: }
3520: PetscViewerPopFormat(viewer);
3521: return(0);
3522: }
3526: /*@C
3527: TSAdjointMonitorSet - Sets an ADDITIONAL function that is to be used at every
3528: timestep to display the iteration's progress.
3530: Logically Collective on TS
3532: Input Parameters:
3533: + ts - the TS context obtained from TSCreate()
3534: . adjointmonitor - monitoring routine
3535: . adjointmctx - [optional] user-defined context for private data for the
3536: monitor routine (use NULL if no context is desired)
3537: - adjointmonitordestroy - [optional] routine that frees monitor context
3538: (may be NULL)
3540: Calling sequence of monitor:
3541: $ int adjointmonitor(TS ts,PetscInt steps,PetscReal time,Vec u,PetscInt numcost,Vec *lambda, Vec *mu,void *adjointmctx)
3543: + ts - the TS context
3544: . steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
3545: been interpolated to)
3546: . time - current time
3547: . u - current iterate
3548: . numcost - number of cost functionos
3549: . lambda - sensitivities to initial conditions
3550: . mu - sensitivities to parameters
3551: - adjointmctx - [optional] adjoint monitoring context
3553: Notes:
3554: This routine adds an additional monitor to the list of monitors that
3555: already has been loaded.
3557: Fortran notes: Only a single monitor function can be set for each TS object
3559: Level: intermediate
3561: .keywords: TS, timestep, set, adjoint, monitor
3563: .seealso: TSAdjointMonitorCancel()
3564: @*/
3565: PetscErrorCode TSAdjointMonitorSet(TS ts,PetscErrorCode (*adjointmonitor)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,void*),void *adjointmctx,PetscErrorCode (*adjointmdestroy)(void**))
3566: {
3568: PetscInt i;
3569: PetscBool identical;
3573: for (i=0; i<ts->numbermonitors;i++) {
3574: PetscMonitorCompare((PetscErrorCode (*)(void))adjointmonitor,adjointmctx,adjointmdestroy,(PetscErrorCode (*)(void))ts->adjointmonitor[i],ts->adjointmonitorcontext[i],ts->adjointmonitordestroy[i],&identical);
3575: if (identical) return(0);
3576: }
3577: if (ts->numberadjointmonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many adjoint monitors set");
3578: ts->adjointmonitor[ts->numberadjointmonitors] = adjointmonitor;
3579: ts->adjointmonitordestroy[ts->numberadjointmonitors] = adjointmdestroy;
3580: ts->adjointmonitorcontext[ts->numberadjointmonitors++] = (void*)adjointmctx;
3581: return(0);
3582: }
3586: /*@C
3587: TSAdjointMonitorCancel - Clears all the adjoint monitors that have been set on a time-step object.
3589: Logically Collective on TS
3591: Input Parameters:
3592: . ts - the TS context obtained from TSCreate()
3594: Notes:
3595: There is no way to remove a single, specific monitor.
3597: Level: intermediate
3599: .keywords: TS, timestep, set, adjoint, monitor
3601: .seealso: TSAdjointMonitorSet()
3602: @*/
3603: PetscErrorCode TSAdjointMonitorCancel(TS ts)
3604: {
3606: PetscInt i;
3610: for (i=0; i<ts->numberadjointmonitors; i++) {
3611: if (ts->adjointmonitordestroy[i]) {
3612: (*ts->adjointmonitordestroy[i])(&ts->adjointmonitorcontext[i]);
3613: }
3614: }
3615: ts->numberadjointmonitors = 0;
3616: return(0);
3617: }
3621: /*@C
3622: TSAdjointMonitorDefault - the default monitor of adjoint computations
3624: Level: intermediate
3626: .keywords: TS, set, monitor
3628: .seealso: TSAdjointMonitorSet()
3629: @*/
3630: PetscErrorCode TSAdjointMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscInt numcost,Vec *lambda,Vec *mu,PetscViewerAndFormat *vf)
3631: {
3633: PetscViewer viewer = vf->viewer;
3637: PetscViewerPushFormat(viewer,vf->format);
3638: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3639: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3640: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3641: PetscViewerPopFormat(viewer);
3642: return(0);
3643: }
3647: /*@
3648: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3650: Collective on TS
3652: Input Argument:
3653: + ts - time stepping context
3654: - t - time to interpolate to
3656: Output Argument:
3657: . U - state at given time
3659: Level: intermediate
3661: Developer Notes:
3662: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3664: .keywords: TS, set
3666: .seealso: TSSetExactFinalTime(), TSSolve()
3667: @*/
3668: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3669: {
3675: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3676: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3677: (*ts->ops->interpolate)(ts,t,U);
3678: return(0);
3679: }
3683: /*@
3684: TSStep - Steps one time step
3686: Collective on TS
3688: Input Parameter:
3689: . ts - the TS context obtained from TSCreate()
3691: Level: developer
3693: Notes:
3694: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3696: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3697: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3699: This may over-step the final time provided in TSSetDuration() depending on the time-step used. TSSolve() interpolates to exactly the
3700: time provided in TSSetDuration(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3702: .keywords: TS, timestep, solve
3704: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3705: @*/
3706: PetscErrorCode TSStep(TS ts)
3707: {
3708: PetscErrorCode ierr;
3709: static PetscBool cite = PETSC_FALSE;
3710: PetscReal ptime;
3714: PetscCitationsRegister("@techreport{tspaper,\n"
3715: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3716: " author = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
3717: " type = {Preprint},\n"
3718: " number = {ANL/MCS-P5061-0114},\n"
3719: " institution = {Argonne National Laboratory},\n"
3720: " year = {2014}\n}\n",&cite);
3722: TSSetUp(ts);
3723: TSTrajectorySetUp(ts->trajectory,ts);
3725: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3726: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3728: if (!ts->steps) ts->ptime_prev = ts->ptime;
3729: ts->reason = TS_CONVERGED_ITERATING;
3730: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3731: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3732: PetscLogEventBegin(TS_Step,ts,0,0,0);
3733: (*ts->ops->step)(ts);
3734: PetscLogEventEnd(TS_Step,ts,0,0,0);
3735: ts->ptime_prev = ptime;
3736: ts->steps++; ts->total_steps++;
3737: ts->steprollback = PETSC_FALSE;
3738: ts->steprestart = PETSC_FALSE;
3740: if (ts->reason < 0) {
3741: if (ts->errorifstepfailed) {
3742: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3743: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3744: }
3745: } else if (!ts->reason) {
3746: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3747: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3748: }
3749: return(0);
3750: }
3754: /*@
3755: TSAdjointStep - Steps one time step backward in the adjoint run
3757: Collective on TS
3759: Input Parameter:
3760: . ts - the TS context obtained from TSCreate()
3762: Level: intermediate
3764: .keywords: TS, adjoint, step
3766: .seealso: TSAdjointSetUp(), TSAdjointSolve()
3767: @*/
3768: PetscErrorCode TSAdjointStep(TS ts)
3769: {
3770: DM dm;
3771: PetscErrorCode ierr;
3775: TSGetDM(ts,&dm);
3776: TSAdjointSetUp(ts);
3778: VecViewFromOptions(ts->vec_sol,(PetscObject)ts,"-ts_view_solution");
3780: ts->reason = TS_CONVERGED_ITERATING;
3781: ts->ptime_prev = ts->ptime;
3782: if (!ts->ops->adjointstep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed because the adjoint of %s has not been implemented, try other time stepping methods for adjoint sensitivity analysis",((PetscObject)ts)->type_name);
3783: PetscLogEventBegin(TS_AdjointStep,ts,0,0,0);
3784: (*ts->ops->adjointstep)(ts);
3785: PetscLogEventEnd(TS_AdjointStep,ts,0,0,0);
3786: ts->steps++; ts->total_steps--;
3788: if (ts->reason < 0) {
3789: if (ts->errorifstepfailed) {
3790: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3791: else if (ts->reason == TS_DIVERGED_STEP_REJECTED) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_reject or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3792: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3793: }
3794: } else if (!ts->reason) {
3795: if (ts->steps >= ts->adjoint_max_steps) ts->reason = TS_CONVERGED_ITS;
3796: }
3797: return(0);
3798: }
3802: /*@
3803: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3804: at the end of a time step with a given order of accuracy.
3806: Collective on TS
3808: Input Arguments:
3809: + ts - time stepping context
3810: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3811: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3813: Output Arguments:
3814: + order - optional, the actual order of the error evaluation
3815: - wlte - the weighted local truncation error norm
3817: Level: advanced
3819: Notes:
3820: If the timestepper cannot evaluate the error in a particular step
3821: (eg. in the first step or restart steps after event handling),
3822: this routine returns wlte=-1.0 .
3824: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3825: @*/
3826: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3827: {
3837: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3838: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3839: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3840: return(0);
3841: }
3845: /*@
3846: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3848: Collective on TS
3850: Input Arguments:
3851: + ts - time stepping context
3852: . order - desired order of accuracy
3853: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3855: Output Arguments:
3856: . U - state at the end of the current step
3858: Level: advanced
3860: Notes:
3861: This function cannot be called until all stages have been evaluated.
3862: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3864: .seealso: TSStep(), TSAdapt
3865: @*/
3866: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3867: {
3874: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3875: (*ts->ops->evaluatestep)(ts,order,U,done);
3876: return(0);
3877: }
3881: /*@
3882: TSForwardCostIntegral - Evaluate the cost integral in the forward run.
3883:
3884: Collective on TS
3885:
3886: Input Arguments:
3887: . ts - time stepping context
3888:
3889: Level: advanced
3890:
3891: Notes:
3892: This function cannot be called until TSStep() has been completed.
3893:
3894: .seealso: TSSolve(), TSAdjointCostIntegral()
3895: @*/
3896: PetscErrorCode TSForwardCostIntegral(TS ts)
3897: {
3900: if (!ts->ops->forwardintegral) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide integral evaluation in the forward run",((PetscObject)ts)->type_name);
3901: (*ts->ops->forwardintegral)(ts);
3902: return(0);
3903: }
3907: /*@
3908: TSSolve - Steps the requested number of timesteps.
3910: Collective on TS
3912: Input Parameter:
3913: + ts - the TS context obtained from TSCreate()
3914: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
3915: otherwise must contain the initial conditions and will contain the solution at the final requested time
3917: Level: beginner
3919: Notes:
3920: The final time returned by this function may be different from the time of the internally
3921: held state accessible by TSGetSolution() and TSGetTime() because the method may have
3922: stepped over the final time.
3924: .keywords: TS, timestep, solve
3926: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
3927: @*/
3928: PetscErrorCode TSSolve(TS ts,Vec u)
3929: {
3930: Vec solution;
3931: PetscErrorCode ierr;
3937: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3939: if (!ts->vec_sol || u == ts->vec_sol) {
3940: VecDuplicate(u,&solution);
3941: TSSetSolution(ts,solution);
3942: VecDestroy(&solution); /* grant ownership */
3943: }
3944: VecCopy(u,ts->vec_sol);
3945: } else if (u) {
3946: TSSetSolution(ts,u);
3947: }
3948: TSSetUp(ts);
3949: TSTrajectorySetUp(ts->trajectory,ts);
3951: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
3952: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3954: /* reset time step and iteration counters */
3955: ts->steps = 0;
3956: ts->ksp_its = 0;
3957: ts->snes_its = 0;
3958: ts->num_snes_failures = 0;
3959: ts->reject = 0;
3960: ts->reason = TS_CONVERGED_ITERATING;
3962: TSViewFromOptions(ts,NULL,"-ts_view_pre");
3964: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
3965: (*ts->ops->solve)(ts);
3966: if (u) {VecCopy(ts->vec_sol,u);}
3967: ts->solvetime = ts->ptime;
3968: solution = ts->vec_sol;
3969: } else { /* Step the requested number of timesteps. */
3970: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3971: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3972: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3973: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
3974: ts->steprollback = PETSC_FALSE;
3975: ts->steprestart = PETSC_TRUE;
3977: while (!ts->reason) {
3978: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3979: if (!ts->steprollback) {
3980: TSPreStep(ts);
3981: }
3982: TSStep(ts);
3983: if (ts->vec_costintegral && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
3984: TSForwardCostIntegral(ts);
3985: }
3986: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
3987: if (!ts->steprollback) {
3988: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3989: TSPostStep(ts);
3990: }
3991: }
3992: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3994: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
3995: TSInterpolate(ts,ts->max_time,u);
3996: ts->solvetime = ts->max_time;
3997: solution = u;
3998: TSMonitor(ts,-1,ts->solvetime,solution);
3999: } else {
4000: if (u) {VecCopy(ts->vec_sol,u);}
4001: ts->solvetime = ts->ptime;
4002: solution = ts->vec_sol;
4003: }
4004: }
4006: TSViewFromOptions(ts,NULL,"-ts_view");
4007: VecViewFromOptions(solution,NULL,"-ts_view_solution");
4008: PetscObjectSAWsBlock((PetscObject)ts);
4009: if (ts->adjoint_solve) {
4010: TSAdjointSolve(ts);
4011: }
4012: return(0);
4013: }
4017: /*@
4018: TSAdjointCostIntegral - Evaluate the cost integral in the adjoint run.
4019:
4020: Collective on TS
4021:
4022: Input Arguments:
4023: . ts - time stepping context
4024:
4025: Level: advanced
4026:
4027: Notes:
4028: This function cannot be called until TSAdjointStep() has been completed.
4029:
4030: .seealso: TSAdjointSolve(), TSAdjointStep
4031: @*/
4032: PetscErrorCode TSAdjointCostIntegral(TS ts)
4033: {
4036: if (!ts->ops->adjointintegral) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide integral evaluation in the adjoint run",((PetscObject)ts)->type_name);
4037: (*ts->ops->adjointintegral)(ts);
4038: return(0);
4039: }
4043: /*@
4044: TSAdjointSolve - Solves the discrete ajoint problem for an ODE/DAE
4046: Collective on TS
4048: Input Parameter:
4049: . ts - the TS context obtained from TSCreate()
4051: Options Database:
4052: . -ts_adjoint_view_solution <viewerinfo> - views the first gradient with respect to the initial conditions
4054: Level: intermediate
4056: Notes:
4057: This must be called after a call to TSSolve() that solves the forward problem
4059: By default this will integrate back to the initial time, one can use TSAdjointSetSteps() to step back to a later time
4061: .keywords: TS, timestep, solve
4063: .seealso: TSCreate(), TSSetCostGradients(), TSSetSolution(), TSAdjointStep()
4064: @*/
4065: PetscErrorCode TSAdjointSolve(TS ts)
4066: {
4067: PetscErrorCode ierr;
4071: TSAdjointSetUp(ts);
4073: /* reset time step and iteration counters */
4074: ts->steps = 0;
4075: ts->ksp_its = 0;
4076: ts->snes_its = 0;
4077: ts->num_snes_failures = 0;
4078: ts->reject = 0;
4079: ts->reason = TS_CONVERGED_ITERATING;
4081: if (!ts->adjoint_max_steps) ts->adjoint_max_steps = ts->total_steps;
4083: if (ts->steps >= ts->adjoint_max_steps) ts->reason = TS_CONVERGED_ITS;
4084: while (!ts->reason) {
4085: TSTrajectoryGet(ts->trajectory,ts,ts->total_steps,&ts->ptime);
4086: TSAdjointMonitor(ts,ts->total_steps,ts->ptime,ts->vec_sol,ts->numcost,ts->vecs_sensi,ts->vecs_sensip);
4087: TSAdjointEventHandler(ts);
4088: TSAdjointStep(ts);
4089: if (ts->vec_costintegral && !ts->costintegralfwd) {
4090: TSAdjointCostIntegral(ts);
4091: }
4092: }
4093: TSTrajectoryGet(ts->trajectory,ts,ts->total_steps,&ts->ptime);
4094: TSAdjointMonitor(ts,ts->total_steps,ts->ptime,ts->vec_sol,ts->numcost,ts->vecs_sensi,ts->vecs_sensip);
4095: ts->solvetime = ts->ptime;
4096: TSTrajectoryViewFromOptions(ts->trajectory,NULL,"-ts_trajectory_view");
4097: VecViewFromOptions(ts->vecs_sensi[0],(PetscObject) ts, "-ts_adjoint_view_solution");
4098: return(0);
4099: }
4103: /*@C
4104: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
4106: Collective on TS
4108: Input Parameters:
4109: + ts - time stepping context obtained from TSCreate()
4110: . step - step number that has just completed
4111: . ptime - model time of the state
4112: - u - state at the current model time
4114: Notes:
4115: TSMonitor() is typically used automatically within the time stepping implementations.
4116: Users would almost never call this routine directly.
4118: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
4120: Level: developer
4122: .keywords: TS, timestep
4123: @*/
4124: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4125: {
4126: DM dm;
4127: PetscInt i,n = ts->numbermonitors;
4134: TSGetDM(ts,&dm);
4135: DMSetOutputSequenceNumber(dm,step,ptime);
4137: VecLockPush(u);
4138: for (i=0; i<n; i++) {
4139: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4140: }
4141: VecLockPop(u);
4142: return(0);
4143: }
4147: /*@C
4148: TSAdjointMonitor - Runs all user-provided adjoint monitor routines set using TSAdjointMonitorSet()
4150: Collective on TS
4152: Input Parameters:
4153: + ts - time stepping context obtained from TSCreate()
4154: . step - step number that has just completed
4155: . ptime - model time of the state
4156: . u - state at the current model time
4157: . numcost - number of cost functions (dimension of lambda or mu)
4158: . lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
4159: - mu - vectors containing the gradients of the cost functions with respect to the problem parameters
4161: Notes:
4162: TSAdjointMonitor() is typically used automatically within the time stepping implementations.
4163: Users would almost never call this routine directly.
4165: Level: developer
4167: .keywords: TS, timestep
4168: @*/
4169: PetscErrorCode TSAdjointMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscInt numcost,Vec *lambda, Vec *mu)
4170: {
4172: PetscInt i,n = ts->numberadjointmonitors;
4177: VecLockPush(u);
4178: for (i=0; i<n; i++) {
4179: (*ts->adjointmonitor[i])(ts,step,ptime,u,numcost,lambda,mu,ts->adjointmonitorcontext[i]);
4180: }
4181: VecLockPop(u);
4182: return(0);
4183: }
4185: /* ------------------------------------------------------------------------*/
4188: /*@C
4189: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4190: TS to monitor the solution process graphically in various ways
4192: Collective on TS
4194: Input Parameters:
4195: + host - the X display to open, or null for the local machine
4196: . label - the title to put in the title bar
4197: . x, y - the screen coordinates of the upper left coordinate of the window
4198: . m, n - the screen width and height in pixels
4199: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
4201: Output Parameter:
4202: . ctx - the context
4204: Options Database Key:
4205: + -ts_monitor_lg_timestep - automatically sets line graph monitor
4206: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4207: . -ts_monitor_lg_error - monitor the error
4208: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4209: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4210: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
4212: Notes:
4213: Use TSMonitorLGCtxDestroy() to destroy.
4215: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
4217: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4218: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4219: as the first argument.
4221: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
4224: Level: intermediate
4226: .keywords: TS, monitor, line graph, residual
4228: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4229: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4230: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4231: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4232: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
4234: @*/
4235: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4236: {
4237: PetscDraw draw;
4241: PetscNew(ctx);
4242: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4243: PetscDrawSetFromOptions(draw);
4244: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4245: PetscDrawLGSetFromOptions((*ctx)->lg);
4246: PetscDrawDestroy(&draw);
4247: (*ctx)->howoften = howoften;
4248: return(0);
4249: }
4253: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4254: {
4255: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4256: PetscReal x = ptime,y;
4260: if (step < 0) return(0); /* -1 indicates an interpolated solution */
4261: if (!step) {
4262: PetscDrawAxis axis;
4263: PetscDrawLGGetAxis(ctx->lg,&axis);
4264: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time","Time Step");
4265: PetscDrawLGReset(ctx->lg);
4266: }
4267: TSGetTimeStep(ts,&y);
4268: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4269: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4270: PetscDrawLGDraw(ctx->lg);
4271: PetscDrawLGSave(ctx->lg);
4272: }
4273: return(0);
4274: }
4278: /*@C
4279: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4280: with TSMonitorLGCtxCreate().
4282: Collective on TSMonitorLGCtx
4284: Input Parameter:
4285: . ctx - the monitor context
4287: Level: intermediate
4289: .keywords: TS, monitor, line graph, destroy
4291: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
4292: @*/
4293: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4294: {
4298: if ((*ctx)->transformdestroy) {
4299: ((*ctx)->transformdestroy)((*ctx)->transformctx);
4300: }
4301: PetscDrawLGDestroy(&(*ctx)->lg);
4302: PetscStrArrayDestroy(&(*ctx)->names);
4303: PetscStrArrayDestroy(&(*ctx)->displaynames);
4304: PetscFree((*ctx)->displayvariables);
4305: PetscFree((*ctx)->displayvalues);
4306: PetscFree(*ctx);
4307: return(0);
4308: }
4312: /*@
4313: TSGetTime - Gets the time of the most recently completed step.
4315: Not Collective
4317: Input Parameter:
4318: . ts - the TS context obtained from TSCreate()
4320: Output Parameter:
4321: . t - the current time. This time may not corresponds to the final time set with TSSetDuration(), use TSGetSolveTime().
4323: Level: beginner
4325: Note:
4326: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4327: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
4329: .seealso: TSSetInitialTimeStep(), TSGetTimeStep(), TSGetSolveTime()
4331: .keywords: TS, get, time
4332: @*/
4333: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
4334: {
4338: *t = ts->ptime;
4339: return(0);
4340: }
4344: /*@
4345: TSGetPrevTime - Gets the starting time of the previously completed step.
4347: Not Collective
4349: Input Parameter:
4350: . ts - the TS context obtained from TSCreate()
4352: Output Parameter:
4353: . t - the previous time
4355: Level: beginner
4357: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
4359: .keywords: TS, get, time
4360: @*/
4361: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
4362: {
4366: *t = ts->ptime_prev;
4367: return(0);
4368: }
4372: /*@
4373: TSSetTime - Allows one to reset the time.
4375: Logically Collective on TS
4377: Input Parameters:
4378: + ts - the TS context obtained from TSCreate()
4379: - time - the time
4381: Level: intermediate
4383: .seealso: TSGetTime(), TSSetDuration()
4385: .keywords: TS, set, time
4386: @*/
4387: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4388: {
4392: ts->ptime = t;
4393: return(0);
4394: }
4398: /*@C
4399: TSSetOptionsPrefix - Sets the prefix used for searching for all
4400: TS options in the database.
4402: Logically Collective on TS
4404: Input Parameter:
4405: + ts - The TS context
4406: - prefix - The prefix to prepend to all option names
4408: Notes:
4409: A hyphen (-) must NOT be given at the beginning of the prefix name.
4410: The first character of all runtime options is AUTOMATICALLY the
4411: hyphen.
4413: Level: advanced
4415: .keywords: TS, set, options, prefix, database
4417: .seealso: TSSetFromOptions()
4419: @*/
4420: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4421: {
4423: SNES snes;
4427: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4428: TSGetSNES(ts,&snes);
4429: SNESSetOptionsPrefix(snes,prefix);
4430: return(0);
4431: }
4436: /*@C
4437: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4438: TS options in the database.
4440: Logically Collective on TS
4442: Input Parameter:
4443: + ts - The TS context
4444: - prefix - The prefix to prepend to all option names
4446: Notes:
4447: A hyphen (-) must NOT be given at the beginning of the prefix name.
4448: The first character of all runtime options is AUTOMATICALLY the
4449: hyphen.
4451: Level: advanced
4453: .keywords: TS, append, options, prefix, database
4455: .seealso: TSGetOptionsPrefix()
4457: @*/
4458: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4459: {
4461: SNES snes;
4465: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4466: TSGetSNES(ts,&snes);
4467: SNESAppendOptionsPrefix(snes,prefix);
4468: return(0);
4469: }
4473: /*@C
4474: TSGetOptionsPrefix - Sets the prefix used for searching for all
4475: TS options in the database.
4477: Not Collective
4479: Input Parameter:
4480: . ts - The TS context
4482: Output Parameter:
4483: . prefix - A pointer to the prefix string used
4485: Notes: On the fortran side, the user should pass in a string 'prifix' of
4486: sufficient length to hold the prefix.
4488: Level: intermediate
4490: .keywords: TS, get, options, prefix, database
4492: .seealso: TSAppendOptionsPrefix()
4493: @*/
4494: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4495: {
4501: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4502: return(0);
4503: }
4507: /*@C
4508: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4510: Not Collective, but parallel objects are returned if TS is parallel
4512: Input Parameter:
4513: . ts - The TS context obtained from TSCreate()
4515: Output Parameters:
4516: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4517: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4518: . func - Function to compute the Jacobian of the RHS (or NULL)
4519: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4521: Notes: You can pass in NULL for any return argument you do not need.
4523: Level: intermediate
4525: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
4527: .keywords: TS, timestep, get, matrix, Jacobian
4528: @*/
4529: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4530: {
4532: SNES snes;
4533: DM dm;
4536: TSGetSNES(ts,&snes);
4537: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4538: TSGetDM(ts,&dm);
4539: DMTSGetRHSJacobian(dm,func,ctx);
4540: return(0);
4541: }
4545: /*@C
4546: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4548: Not Collective, but parallel objects are returned if TS is parallel
4550: Input Parameter:
4551: . ts - The TS context obtained from TSCreate()
4553: Output Parameters:
4554: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4555: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4556: . f - The function to compute the matrices
4557: - ctx - User-defined context for Jacobian evaluation routine
4559: Notes: You can pass in NULL for any return argument you do not need.
4561: Level: advanced
4563: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
4565: .keywords: TS, timestep, get, matrix, Jacobian
4566: @*/
4567: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4568: {
4570: SNES snes;
4571: DM dm;
4574: TSGetSNES(ts,&snes);
4575: SNESSetUpMatrices(snes);
4576: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4577: TSGetDM(ts,&dm);
4578: DMTSGetIJacobian(dm,f,ctx);
4579: return(0);
4580: }
4585: /*@C
4586: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4587: VecView() for the solution at each timestep
4589: Collective on TS
4591: Input Parameters:
4592: + ts - the TS context
4593: . step - current time-step
4594: . ptime - current time
4595: - dummy - either a viewer or NULL
4597: Options Database:
4598: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4600: Notes: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4601: will look bad
4603: Level: intermediate
4605: .keywords: TS, vector, monitor, view
4607: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4608: @*/
4609: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4610: {
4611: PetscErrorCode ierr;
4612: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4613: PetscDraw draw;
4616: if (!step && ictx->showinitial) {
4617: if (!ictx->initialsolution) {
4618: VecDuplicate(u,&ictx->initialsolution);
4619: }
4620: VecCopy(u,ictx->initialsolution);
4621: }
4622: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4624: if (ictx->showinitial) {
4625: PetscReal pause;
4626: PetscViewerDrawGetPause(ictx->viewer,&pause);
4627: PetscViewerDrawSetPause(ictx->viewer,0.0);
4628: VecView(ictx->initialsolution,ictx->viewer);
4629: PetscViewerDrawSetPause(ictx->viewer,pause);
4630: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4631: }
4632: VecView(u,ictx->viewer);
4633: if (ictx->showtimestepandtime) {
4634: PetscReal xl,yl,xr,yr,h;
4635: char time[32];
4637: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4638: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4639: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4640: h = yl + .95*(yr - yl);
4641: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4642: PetscDrawFlush(draw);
4643: }
4645: if (ictx->showinitial) {
4646: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4647: }
4648: return(0);
4649: }
4653: /*@C
4654: TSAdjointMonitorDrawSensi - Monitors progress of the adjoint TS solvers by calling
4655: VecView() for the sensitivities to initial states at each timestep
4657: Collective on TS
4659: Input Parameters:
4660: + ts - the TS context
4661: . step - current time-step
4662: . ptime - current time
4663: . u - current state
4664: . numcost - number of cost functions
4665: . lambda - sensitivities to initial conditions
4666: . mu - sensitivities to parameters
4667: - dummy - either a viewer or NULL
4669: Level: intermediate
4671: .keywords: TS, vector, adjoint, monitor, view
4673: .seealso: TSAdjointMonitorSet(), TSAdjointMonitorDefault(), VecView()
4674: @*/
4675: PetscErrorCode TSAdjointMonitorDrawSensi(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscInt numcost,Vec *lambda,Vec *mu,void *dummy)
4676: {
4677: PetscErrorCode ierr;
4678: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4679: PetscDraw draw;
4680: PetscReal xl,yl,xr,yr,h;
4681: char time[32];
4684: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4686: VecView(lambda[0],ictx->viewer);
4687: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4688: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4689: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4690: h = yl + .95*(yr - yl);
4691: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4692: PetscDrawFlush(draw);
4693: return(0);
4694: }
4698: /*@C
4699: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4701: Collective on TS
4703: Input Parameters:
4704: + ts - the TS context
4705: . step - current time-step
4706: . ptime - current time
4707: - dummy - either a viewer or NULL
4709: Level: intermediate
4711: .keywords: TS, vector, monitor, view
4713: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4714: @*/
4715: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4716: {
4717: PetscErrorCode ierr;
4718: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4719: PetscDraw draw;
4720: PetscDrawAxis axis;
4721: PetscInt n;
4722: PetscMPIInt size;
4723: PetscReal U0,U1,xl,yl,xr,yr,h;
4724: char time[32];
4725: const PetscScalar *U;
4728: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4729: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4730: VecGetSize(u,&n);
4731: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4733: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4734: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4735: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4736: if (!step) {
4737: PetscDrawClear(draw);
4738: PetscDrawAxisDraw(axis);
4739: }
4741: VecGetArrayRead(u,&U);
4742: U0 = PetscRealPart(U[0]);
4743: U1 = PetscRealPart(U[1]);
4744: VecRestoreArrayRead(u,&U);
4745: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4747: PetscDrawCollectiveBegin(draw);
4748: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4749: if (ictx->showtimestepandtime) {
4750: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4751: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4752: h = yl + .95*(yr - yl);
4753: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4754: }
4755: PetscDrawCollectiveEnd(draw);
4756: PetscDrawFlush(draw);
4757: PetscDrawSave(draw);
4758: return(0);
4759: }
4764: /*@C
4765: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4767: Collective on TS
4769: Input Parameters:
4770: . ctx - the monitor context
4772: Level: intermediate
4774: .keywords: TS, vector, monitor, view
4776: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4777: @*/
4778: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4779: {
4783: PetscViewerDestroy(&(*ictx)->viewer);
4784: VecDestroy(&(*ictx)->initialsolution);
4785: PetscFree(*ictx);
4786: return(0);
4787: }
4791: /*@C
4792: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4794: Collective on TS
4796: Input Parameter:
4797: . ts - time-step context
4799: Output Patameter:
4800: . ctx - the monitor context
4802: Options Database:
4803: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4805: Level: intermediate
4807: .keywords: TS, vector, monitor, view
4809: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4810: @*/
4811: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4812: {
4813: PetscErrorCode ierr;
4816: PetscNew(ctx);
4817: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4818: PetscViewerSetFromOptions((*ctx)->viewer);
4820: (*ctx)->howoften = howoften;
4821: (*ctx)->showinitial = PETSC_FALSE;
4822: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4824: (*ctx)->showtimestepandtime = PETSC_FALSE;
4825: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4826: return(0);
4827: }
4831: /*@C
4832: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4833: VecView() for the error at each timestep
4835: Collective on TS
4837: Input Parameters:
4838: + ts - the TS context
4839: . step - current time-step
4840: . ptime - current time
4841: - dummy - either a viewer or NULL
4843: Level: intermediate
4845: .keywords: TS, vector, monitor, view
4847: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4848: @*/
4849: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4850: {
4851: PetscErrorCode ierr;
4852: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4853: PetscViewer viewer = ctx->viewer;
4854: Vec work;
4857: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4858: VecDuplicate(u,&work);
4859: TSComputeSolutionFunction(ts,ptime,work);
4860: VecAXPY(work,-1.0,u);
4861: VecView(work,viewer);
4862: VecDestroy(&work);
4863: return(0);
4864: }
4866: #include <petsc/private/dmimpl.h>
4869: /*@
4870: TSSetDM - Sets the DM that may be used by some preconditioners
4872: Logically Collective on TS and DM
4874: Input Parameters:
4875: + ts - the preconditioner context
4876: - dm - the dm
4878: Level: intermediate
4881: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4882: @*/
4883: PetscErrorCode TSSetDM(TS ts,DM dm)
4884: {
4886: SNES snes;
4887: DMTS tsdm;
4891: PetscObjectReference((PetscObject)dm);
4892: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4893: if (ts->dm->dmts && !dm->dmts) {
4894: DMCopyDMTS(ts->dm,dm);
4895: DMGetDMTS(ts->dm,&tsdm);
4896: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4897: tsdm->originaldm = dm;
4898: }
4899: }
4900: DMDestroy(&ts->dm);
4901: }
4902: ts->dm = dm;
4904: TSGetSNES(ts,&snes);
4905: SNESSetDM(snes,dm);
4906: return(0);
4907: }
4911: /*@
4912: TSGetDM - Gets the DM that may be used by some preconditioners
4914: Not Collective
4916: Input Parameter:
4917: . ts - the preconditioner context
4919: Output Parameter:
4920: . dm - the dm
4922: Level: intermediate
4925: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4926: @*/
4927: PetscErrorCode TSGetDM(TS ts,DM *dm)
4928: {
4933: if (!ts->dm) {
4934: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4935: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4936: }
4937: *dm = ts->dm;
4938: return(0);
4939: }
4943: /*@
4944: SNESTSFormFunction - Function to evaluate nonlinear residual
4946: Logically Collective on SNES
4948: Input Parameter:
4949: + snes - nonlinear solver
4950: . U - the current state at which to evaluate the residual
4951: - ctx - user context, must be a TS
4953: Output Parameter:
4954: . F - the nonlinear residual
4956: Notes:
4957: This function is not normally called by users and is automatically registered with the SNES used by TS.
4958: It is most frequently passed to MatFDColoringSetFunction().
4960: Level: advanced
4962: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4963: @*/
4964: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4965: {
4966: TS ts = (TS)ctx;
4974: (ts->ops->snesfunction)(snes,U,F,ts);
4975: return(0);
4976: }
4980: /*@
4981: SNESTSFormJacobian - Function to evaluate the Jacobian
4983: Collective on SNES
4985: Input Parameter:
4986: + snes - nonlinear solver
4987: . U - the current state at which to evaluate the residual
4988: - ctx - user context, must be a TS
4990: Output Parameter:
4991: + A - the Jacobian
4992: . B - the preconditioning matrix (may be the same as A)
4993: - flag - indicates any structure change in the matrix
4995: Notes:
4996: This function is not normally called by users and is automatically registered with the SNES used by TS.
4998: Level: developer
5000: .seealso: SNESSetJacobian()
5001: @*/
5002: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5003: {
5004: TS ts = (TS)ctx;
5015: (ts->ops->snesjacobian)(snes,U,A,B,ts);
5016: return(0);
5017: }
5021: /*@C
5022: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
5024: Collective on TS
5026: Input Arguments:
5027: + ts - time stepping context
5028: . t - time at which to evaluate
5029: . U - state at which to evaluate
5030: - ctx - context
5032: Output Arguments:
5033: . F - right hand side
5035: Level: intermediate
5037: Notes:
5038: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5039: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
5041: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5042: @*/
5043: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5044: {
5046: Mat Arhs,Brhs;
5049: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5050: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5051: MatMult(Arhs,U,F);
5052: return(0);
5053: }
5057: /*@C
5058: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
5060: Collective on TS
5062: Input Arguments:
5063: + ts - time stepping context
5064: . t - time at which to evaluate
5065: . U - state at which to evaluate
5066: - ctx - context
5068: Output Arguments:
5069: + A - pointer to operator
5070: . B - pointer to preconditioning matrix
5071: - flg - matrix structure flag
5073: Level: intermediate
5075: Notes:
5076: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
5078: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5079: @*/
5080: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5081: {
5083: return(0);
5084: }
5088: /*@C
5089: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
5091: Collective on TS
5093: Input Arguments:
5094: + ts - time stepping context
5095: . t - time at which to evaluate
5096: . U - state at which to evaluate
5097: . Udot - time derivative of state vector
5098: - ctx - context
5100: Output Arguments:
5101: . F - left hand side
5103: Level: intermediate
5105: Notes:
5106: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5107: user is required to write their own TSComputeIFunction.
5108: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5109: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
5111: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
5113: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5114: @*/
5115: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5116: {
5118: Mat A,B;
5121: TSGetIJacobian(ts,&A,&B,NULL,NULL);
5122: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5123: MatMult(A,Udot,F);
5124: return(0);
5125: }
5129: /*@C
5130: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
5132: Collective on TS
5134: Input Arguments:
5135: + ts - time stepping context
5136: . t - time at which to evaluate
5137: . U - state at which to evaluate
5138: . Udot - time derivative of state vector
5139: . shift - shift to apply
5140: - ctx - context
5142: Output Arguments:
5143: + A - pointer to operator
5144: . B - pointer to preconditioning matrix
5145: - flg - matrix structure flag
5147: Level: advanced
5149: Notes:
5150: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
5152: It is only appropriate for problems of the form
5154: $ M Udot = F(U,t)
5156: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
5157: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5158: an implicit operator of the form
5160: $ shift*M + J
5162: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
5163: a copy of M or reassemble it when requested.
5165: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5166: @*/
5167: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5168: {
5172: MatScale(A, shift / ts->ijacobian.shift);
5173: ts->ijacobian.shift = shift;
5174: return(0);
5175: }
5179: /*@
5180: TSGetEquationType - Gets the type of the equation that TS is solving.
5182: Not Collective
5184: Input Parameter:
5185: . ts - the TS context
5187: Output Parameter:
5188: . equation_type - see TSEquationType
5190: Level: beginner
5192: .keywords: TS, equation type
5194: .seealso: TSSetEquationType(), TSEquationType
5195: @*/
5196: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
5197: {
5201: *equation_type = ts->equation_type;
5202: return(0);
5203: }
5207: /*@
5208: TSSetEquationType - Sets the type of the equation that TS is solving.
5210: Not Collective
5212: Input Parameter:
5213: + ts - the TS context
5214: - equation_type - see TSEquationType
5216: Level: advanced
5218: .keywords: TS, equation type
5220: .seealso: TSGetEquationType(), TSEquationType
5221: @*/
5222: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
5223: {
5226: ts->equation_type = equation_type;
5227: return(0);
5228: }
5232: /*@
5233: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
5235: Not Collective
5237: Input Parameter:
5238: . ts - the TS context
5240: Output Parameter:
5241: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5242: manual pages for the individual convergence tests for complete lists
5244: Level: beginner
5246: Notes:
5247: Can only be called after the call to TSSolve() is complete.
5249: .keywords: TS, nonlinear, set, convergence, test
5251: .seealso: TSSetConvergenceTest(), TSConvergedReason
5252: @*/
5253: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5254: {
5258: *reason = ts->reason;
5259: return(0);
5260: }
5264: /*@
5265: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
5267: Not Collective
5269: Input Parameter:
5270: + ts - the TS context
5271: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5272: manual pages for the individual convergence tests for complete lists
5274: Level: advanced
5276: Notes:
5277: Can only be called during TSSolve() is active.
5279: .keywords: TS, nonlinear, set, convergence, test
5281: .seealso: TSConvergedReason
5282: @*/
5283: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
5284: {
5287: ts->reason = reason;
5288: return(0);
5289: }
5293: /*@
5294: TSGetSolveTime - Gets the time after a call to TSSolve()
5296: Not Collective
5298: Input Parameter:
5299: . ts - the TS context
5301: Output Parameter:
5302: . ftime - the final time. This time corresponds to the final time set with TSSetDuration()
5304: Level: beginner
5306: Notes:
5307: Can only be called after the call to TSSolve() is complete.
5309: .keywords: TS, nonlinear, set, convergence, test
5311: .seealso: TSSetConvergenceTest(), TSConvergedReason
5312: @*/
5313: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
5314: {
5318: *ftime = ts->solvetime;
5319: return(0);
5320: }
5324: /*@
5325: TSGetTotalSteps - Gets the total number of steps done since the last call to TSSetUp() or TSCreate()
5327: Not Collective
5329: Input Parameter:
5330: . ts - the TS context
5332: Output Parameter:
5333: . steps - the number of steps
5335: Level: beginner
5337: Notes:
5338: Includes the number of steps for all calls to TSSolve() since TSSetUp() was called
5340: .keywords: TS, nonlinear, set, convergence, test
5342: .seealso: TSSetConvergenceTest(), TSConvergedReason
5343: @*/
5344: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps)
5345: {
5349: *steps = ts->total_steps;
5350: return(0);
5351: }
5355: /*@
5356: TSGetSNESIterations - Gets the total number of nonlinear iterations
5357: used by the time integrator.
5359: Not Collective
5361: Input Parameter:
5362: . ts - TS context
5364: Output Parameter:
5365: . nits - number of nonlinear iterations
5367: Notes:
5368: This counter is reset to zero for each successive call to TSSolve().
5370: Level: intermediate
5372: .keywords: TS, get, number, nonlinear, iterations
5374: .seealso: TSGetKSPIterations()
5375: @*/
5376: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5377: {
5381: *nits = ts->snes_its;
5382: return(0);
5383: }
5387: /*@
5388: TSGetKSPIterations - Gets the total number of linear iterations
5389: used by the time integrator.
5391: Not Collective
5393: Input Parameter:
5394: . ts - TS context
5396: Output Parameter:
5397: . lits - number of linear iterations
5399: Notes:
5400: This counter is reset to zero for each successive call to TSSolve().
5402: Level: intermediate
5404: .keywords: TS, get, number, linear, iterations
5406: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
5407: @*/
5408: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5409: {
5413: *lits = ts->ksp_its;
5414: return(0);
5415: }
5419: /*@
5420: TSGetStepRejections - Gets the total number of rejected steps.
5422: Not Collective
5424: Input Parameter:
5425: . ts - TS context
5427: Output Parameter:
5428: . rejects - number of steps rejected
5430: Notes:
5431: This counter is reset to zero for each successive call to TSSolve().
5433: Level: intermediate
5435: .keywords: TS, get, number
5437: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5438: @*/
5439: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5440: {
5444: *rejects = ts->reject;
5445: return(0);
5446: }
5450: /*@
5451: TSGetSNESFailures - Gets the total number of failed SNES solves
5453: Not Collective
5455: Input Parameter:
5456: . ts - TS context
5458: Output Parameter:
5459: . fails - number of failed nonlinear solves
5461: Notes:
5462: This counter is reset to zero for each successive call to TSSolve().
5464: Level: intermediate
5466: .keywords: TS, get, number
5468: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5469: @*/
5470: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5471: {
5475: *fails = ts->num_snes_failures;
5476: return(0);
5477: }
5481: /*@
5482: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5484: Not Collective
5486: Input Parameter:
5487: + ts - TS context
5488: - rejects - maximum number of rejected steps, pass -1 for unlimited
5490: Notes:
5491: The counter is reset to zero for each step
5493: Options Database Key:
5494: . -ts_max_reject - Maximum number of step rejections before a step fails
5496: Level: intermediate
5498: .keywords: TS, set, maximum, number
5500: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5501: @*/
5502: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5503: {
5506: ts->max_reject = rejects;
5507: return(0);
5508: }
5512: /*@
5513: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5515: Not Collective
5517: Input Parameter:
5518: + ts - TS context
5519: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5521: Notes:
5522: The counter is reset to zero for each successive call to TSSolve().
5524: Options Database Key:
5525: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5527: Level: intermediate
5529: .keywords: TS, set, maximum, number
5531: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5532: @*/
5533: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5534: {
5537: ts->max_snes_failures = fails;
5538: return(0);
5539: }
5543: /*@
5544: TSSetErrorIfStepFails - Error if no step succeeds
5546: Not Collective
5548: Input Parameter:
5549: + ts - TS context
5550: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5552: Options Database Key:
5553: . -ts_error_if_step_fails - Error if no step succeeds
5555: Level: intermediate
5557: .keywords: TS, set, error
5559: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5560: @*/
5561: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5562: {
5565: ts->errorifstepfailed = err;
5566: return(0);
5567: }
5571: /*@C
5572: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5574: Collective on TS
5576: Input Parameters:
5577: + ts - the TS context
5578: . step - current time-step
5579: . ptime - current time
5580: . u - current state
5581: - vf - viewer and its format
5583: Level: intermediate
5585: .keywords: TS, vector, monitor, view
5587: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5588: @*/
5589: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5590: {
5594: PetscViewerPushFormat(vf->viewer,vf->format);
5595: VecView(u,vf->viewer);
5596: PetscViewerPopFormat(vf->viewer);
5597: return(0);
5598: }
5602: /*@C
5603: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5605: Collective on TS
5607: Input Parameters:
5608: + ts - the TS context
5609: . step - current time-step
5610: . ptime - current time
5611: . u - current state
5612: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5614: Level: intermediate
5616: Notes:
5617: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5618: These are named according to the file name template.
5620: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5622: .keywords: TS, vector, monitor, view
5624: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5625: @*/
5626: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5627: {
5629: char filename[PETSC_MAX_PATH_LEN];
5630: PetscViewer viewer;
5633: if (step < 0) return(0); /* -1 indicates interpolated solution */
5634: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5635: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5636: VecView(u,viewer);
5637: PetscViewerDestroy(&viewer);
5638: return(0);
5639: }
5643: /*@C
5644: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5646: Collective on TS
5648: Input Parameters:
5649: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5651: Level: intermediate
5653: Note:
5654: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5656: .keywords: TS, vector, monitor, view
5658: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5659: @*/
5660: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5661: {
5665: PetscFree(*(char**)filenametemplate);
5666: return(0);
5667: }
5671: /*@
5672: TSGetAdapt - Get the adaptive controller context for the current method
5674: Collective on TS if controller has not been created yet
5676: Input Arguments:
5677: . ts - time stepping context
5679: Output Arguments:
5680: . adapt - adaptive controller
5682: Level: intermediate
5684: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5685: @*/
5686: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5687: {
5693: if (!ts->adapt) {
5694: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5695: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5696: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5697: }
5698: *adapt = ts->adapt;
5699: return(0);
5700: }
5704: /*@
5705: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5707: Logically Collective
5709: Input Arguments:
5710: + ts - time integration context
5711: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5712: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5713: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5714: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5716: Options Database keys:
5717: + -ts_rtol <rtol> - relative tolerance for local truncation error
5718: - -ts_atol <atol> Absolute tolerance for local truncation error
5720: Notes:
5721: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5722: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5723: computed only for the differential or the algebraic part then this can be done using the vector of
5724: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5725: differential part and infinity for the algebraic part, the LTE calculation will include only the
5726: differential variables.
5728: Level: beginner
5730: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
5731: @*/
5732: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5733: {
5737: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5738: if (vatol) {
5739: PetscObjectReference((PetscObject)vatol);
5740: VecDestroy(&ts->vatol);
5741: ts->vatol = vatol;
5742: }
5743: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5744: if (vrtol) {
5745: PetscObjectReference((PetscObject)vrtol);
5746: VecDestroy(&ts->vrtol);
5747: ts->vrtol = vrtol;
5748: }
5749: return(0);
5750: }
5754: /*@
5755: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5757: Logically Collective
5759: Input Arguments:
5760: . ts - time integration context
5762: Output Arguments:
5763: + atol - scalar absolute tolerances, NULL to ignore
5764: . vatol - vector of absolute tolerances, NULL to ignore
5765: . rtol - scalar relative tolerances, NULL to ignore
5766: - vrtol - vector of relative tolerances, NULL to ignore
5768: Level: beginner
5770: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
5771: @*/
5772: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5773: {
5775: if (atol) *atol = ts->atol;
5776: if (vatol) *vatol = ts->vatol;
5777: if (rtol) *rtol = ts->rtol;
5778: if (vrtol) *vrtol = ts->vrtol;
5779: return(0);
5780: }
5784: /*@
5785: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5787: Collective on TS
5789: Input Arguments:
5790: + ts - time stepping context
5791: . U - state vector, usually ts->vec_sol
5792: - Y - state vector to be compared to U
5794: Output Arguments:
5795: . norm - weighted norm, a value of 1.0 is considered small
5797: Level: developer
5799: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5800: @*/
5801: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm)
5802: {
5803: PetscErrorCode ierr;
5804: PetscInt i,n,N,rstart;
5805: const PetscScalar *u,*y;
5806: PetscReal sum,gsum;
5807: PetscReal tol;
5817: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5819: VecGetSize(U,&N);
5820: VecGetLocalSize(U,&n);
5821: VecGetOwnershipRange(U,&rstart,NULL);
5822: VecGetArrayRead(U,&u);
5823: VecGetArrayRead(Y,&y);
5824: sum = 0.;
5825: if (ts->vatol && ts->vrtol) {
5826: const PetscScalar *atol,*rtol;
5827: VecGetArrayRead(ts->vatol,&atol);
5828: VecGetArrayRead(ts->vrtol,&rtol);
5829: for (i=0; i<n; i++) {
5830: tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5831: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5832: }
5833: VecRestoreArrayRead(ts->vatol,&atol);
5834: VecRestoreArrayRead(ts->vrtol,&rtol);
5835: } else if (ts->vatol) { /* vector atol, scalar rtol */
5836: const PetscScalar *atol;
5837: VecGetArrayRead(ts->vatol,&atol);
5838: for (i=0; i<n; i++) {
5839: tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5840: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5841: }
5842: VecRestoreArrayRead(ts->vatol,&atol);
5843: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5844: const PetscScalar *rtol;
5845: VecGetArrayRead(ts->vrtol,&rtol);
5846: for (i=0; i<n; i++) {
5847: tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5848: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5849: }
5850: VecRestoreArrayRead(ts->vrtol,&rtol);
5851: } else { /* scalar atol, scalar rtol */
5852: for (i=0; i<n; i++) {
5853: tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5854: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
5855: }
5856: }
5857: VecRestoreArrayRead(U,&u);
5858: VecRestoreArrayRead(Y,&y);
5860: MPIU_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5861: *norm = PetscSqrtReal(gsum / N);
5863: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5864: return(0);
5865: }
5869: /*@
5870: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5872: Collective on TS
5874: Input Arguments:
5875: + ts - time stepping context
5876: . U - state vector, usually ts->vec_sol
5877: - Y - state vector to be compared to U
5879: Output Arguments:
5880: . norm - weighted norm, a value of 1.0 is considered small
5882: Level: developer
5884: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5885: @*/
5886: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm)
5887: {
5888: PetscErrorCode ierr;
5889: PetscInt i,n,N,rstart,k;
5890: const PetscScalar *u,*y;
5891: PetscReal max,gmax;
5892: PetscReal tol;
5902: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5904: VecGetSize(U,&N);
5905: VecGetLocalSize(U,&n);
5906: VecGetOwnershipRange(U,&rstart,NULL);
5907: VecGetArrayRead(U,&u);
5908: VecGetArrayRead(Y,&y);
5909: if (ts->vatol && ts->vrtol) {
5910: const PetscScalar *atol,*rtol;
5911: VecGetArrayRead(ts->vatol,&atol);
5912: VecGetArrayRead(ts->vrtol,&rtol);
5913: k = 0;
5914: tol = PetscRealPart(atol[k]) + PetscRealPart(rtol[k]) * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5915: max = PetscAbsScalar(y[k] - u[k]) / tol;
5916: for (i=1; i<n; i++) {
5917: tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5918: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5919: }
5920: VecRestoreArrayRead(ts->vatol,&atol);
5921: VecRestoreArrayRead(ts->vrtol,&rtol);
5922: } else if (ts->vatol) { /* vector atol, scalar rtol */
5923: const PetscScalar *atol;
5924: VecGetArrayRead(ts->vatol,&atol);
5925: k = 0;
5926: tol = PetscRealPart(atol[k]) + ts->rtol * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5927: max = PetscAbsScalar(y[k] - u[k]) / tol;
5928: for (i=1; i<n; i++) {
5929: tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5930: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5931: }
5932: VecRestoreArrayRead(ts->vatol,&atol);
5933: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5934: const PetscScalar *rtol;
5935: VecGetArrayRead(ts->vrtol,&rtol);
5936: k = 0;
5937: tol = ts->atol + PetscRealPart(rtol[k]) * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5938: max = PetscAbsScalar(y[k] - u[k]) / tol;
5939: for (i=1; i<n; i++) {
5940: tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5941: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5942: }
5943: VecRestoreArrayRead(ts->vrtol,&rtol);
5944: } else { /* scalar atol, scalar rtol */
5945: k = 0;
5946: tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[k]),PetscAbsScalar(y[k]));
5947: max = PetscAbsScalar(y[k] - u[k]) / tol;
5948: for (i=1; i<n; i++) {
5949: tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5950: max = PetscMax(max,PetscAbsScalar(y[i] - u[i]) / tol);
5951: }
5952: }
5953: VecRestoreArrayRead(U,&u);
5954: VecRestoreArrayRead(Y,&y);
5956: MPIU_Allreduce(&max,&gmax,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5957: *norm = gmax;
5959: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5960: return(0);
5961: }
5965: /*@
5966: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors
5968: Collective on TS
5970: Input Arguments:
5971: + ts - time stepping context
5972: . U - state vector, usually ts->vec_sol
5973: . Y - state vector to be compared to U
5974: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5976: Output Arguments:
5977: . norm - weighted norm, a value of 1.0 is considered small
5980: Options Database Keys:
5981: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5983: Level: developer
5985: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
5986: @*/
5987: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm)
5988: {
5992: if (wnormtype == NORM_2) {
5993: TSErrorWeightedNorm2(ts,U,Y,norm);
5994: } else if(wnormtype == NORM_INFINITY) {
5995: TSErrorWeightedNormInfinity(ts,U,Y,norm);
5996: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
5997: return(0);
5998: }
6002: /*@
6003: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6005: Logically Collective on TS
6007: Input Arguments:
6008: + ts - time stepping context
6009: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6011: Note:
6012: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6014: Level: intermediate
6016: .seealso: TSGetCFLTime(), TSADAPTCFL
6017: @*/
6018: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6019: {
6022: ts->cfltime_local = cfltime;
6023: ts->cfltime = -1.;
6024: return(0);
6025: }
6029: /*@
6030: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6032: Collective on TS
6034: Input Arguments:
6035: . ts - time stepping context
6037: Output Arguments:
6038: . cfltime - maximum stable time step for forward Euler
6040: Level: advanced
6042: .seealso: TSSetCFLTimeLocal()
6043: @*/
6044: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6045: {
6049: if (ts->cfltime < 0) {
6050: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6051: }
6052: *cfltime = ts->cfltime;
6053: return(0);
6054: }
6058: /*@
6059: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6061: Input Parameters:
6062: . ts - the TS context.
6063: . xl - lower bound.
6064: . xu - upper bound.
6066: Notes:
6067: If this routine is not called then the lower and upper bounds are set to
6068: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6070: Level: advanced
6072: @*/
6073: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6074: {
6076: SNES snes;
6079: TSGetSNES(ts,&snes);
6080: SNESVISetVariableBounds(snes,xl,xu);
6081: return(0);
6082: }
6084: #if defined(PETSC_HAVE_MATLAB_ENGINE)
6085: #include <mex.h>
6087: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
6091: /*
6092: TSComputeFunction_Matlab - Calls the function that has been set with
6093: TSSetFunctionMatlab().
6095: Collective on TS
6097: Input Parameters:
6098: + snes - the TS context
6099: - u - input vector
6101: Output Parameter:
6102: . y - function vector, as set by TSSetFunction()
6104: Notes:
6105: TSComputeFunction() is typically used within nonlinear solvers
6106: implementations, so most users would not generally call this routine
6107: themselves.
6109: Level: developer
6111: .keywords: TS, nonlinear, compute, function
6113: .seealso: TSSetFunction(), TSGetFunction()
6114: */
6115: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
6116: {
6117: PetscErrorCode ierr;
6118: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6119: int nlhs = 1,nrhs = 7;
6120: mxArray *plhs[1],*prhs[7];
6121: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
6131: PetscMemcpy(&ls,&snes,sizeof(snes));
6132: PetscMemcpy(&lx,&u,sizeof(u));
6133: PetscMemcpy(&lxdot,&udot,sizeof(udot));
6134: PetscMemcpy(&ly,&y,sizeof(u));
6136: prhs[0] = mxCreateDoubleScalar((double)ls);
6137: prhs[1] = mxCreateDoubleScalar(time);
6138: prhs[2] = mxCreateDoubleScalar((double)lx);
6139: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6140: prhs[4] = mxCreateDoubleScalar((double)ly);
6141: prhs[5] = mxCreateString(sctx->funcname);
6142: prhs[6] = sctx->ctx;
6143: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
6144: mxGetScalar(plhs[0]);
6145: mxDestroyArray(prhs[0]);
6146: mxDestroyArray(prhs[1]);
6147: mxDestroyArray(prhs[2]);
6148: mxDestroyArray(prhs[3]);
6149: mxDestroyArray(prhs[4]);
6150: mxDestroyArray(prhs[5]);
6151: mxDestroyArray(plhs[0]);
6152: return(0);
6153: }
6158: /*
6159: TSSetFunctionMatlab - Sets the function evaluation routine and function
6160: vector for use by the TS routines in solving ODEs
6161: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
6163: Logically Collective on TS
6165: Input Parameters:
6166: + ts - the TS context
6167: - func - function evaluation routine
6169: Calling sequence of func:
6170: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
6172: Level: beginner
6174: .keywords: TS, nonlinear, set, function
6176: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6177: */
6178: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
6179: {
6180: PetscErrorCode ierr;
6181: TSMatlabContext *sctx;
6184: /* currently sctx is memory bleed */
6185: PetscMalloc(sizeof(TSMatlabContext),&sctx);
6186: PetscStrallocpy(func,&sctx->funcname);
6187: /*
6188: This should work, but it doesn't
6189: sctx->ctx = ctx;
6190: mexMakeArrayPersistent(sctx->ctx);
6191: */
6192: sctx->ctx = mxDuplicateArray(ctx);
6194: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
6195: return(0);
6196: }
6200: /*
6201: TSComputeJacobian_Matlab - Calls the function that has been set with
6202: TSSetJacobianMatlab().
6204: Collective on TS
6206: Input Parameters:
6207: + ts - the TS context
6208: . u - input vector
6209: . A, B - the matrices
6210: - ctx - user context
6212: Level: developer
6214: .keywords: TS, nonlinear, compute, function
6216: .seealso: TSSetFunction(), TSGetFunction()
6217: @*/
6218: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
6219: {
6220: PetscErrorCode ierr;
6221: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6222: int nlhs = 2,nrhs = 9;
6223: mxArray *plhs[2],*prhs[9];
6224: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
6230: /* call Matlab function in ctx with arguments u and y */
6232: PetscMemcpy(&ls,&ts,sizeof(ts));
6233: PetscMemcpy(&lx,&u,sizeof(u));
6234: PetscMemcpy(&lxdot,&udot,sizeof(u));
6235: PetscMemcpy(&lA,A,sizeof(u));
6236: PetscMemcpy(&lB,B,sizeof(u));
6238: prhs[0] = mxCreateDoubleScalar((double)ls);
6239: prhs[1] = mxCreateDoubleScalar((double)time);
6240: prhs[2] = mxCreateDoubleScalar((double)lx);
6241: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6242: prhs[4] = mxCreateDoubleScalar((double)shift);
6243: prhs[5] = mxCreateDoubleScalar((double)lA);
6244: prhs[6] = mxCreateDoubleScalar((double)lB);
6245: prhs[7] = mxCreateString(sctx->funcname);
6246: prhs[8] = sctx->ctx;
6247: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
6248: mxGetScalar(plhs[0]);
6249: mxDestroyArray(prhs[0]);
6250: mxDestroyArray(prhs[1]);
6251: mxDestroyArray(prhs[2]);
6252: mxDestroyArray(prhs[3]);
6253: mxDestroyArray(prhs[4]);
6254: mxDestroyArray(prhs[5]);
6255: mxDestroyArray(prhs[6]);
6256: mxDestroyArray(prhs[7]);
6257: mxDestroyArray(plhs[0]);
6258: mxDestroyArray(plhs[1]);
6259: return(0);
6260: }
6265: /*
6266: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
6267: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
6269: Logically Collective on TS
6271: Input Parameters:
6272: + ts - the TS context
6273: . A,B - Jacobian matrices
6274: . func - function evaluation routine
6275: - ctx - user context
6277: Calling sequence of func:
6278: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
6281: Level: developer
6283: .keywords: TS, nonlinear, set, function
6285: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6286: */
6287: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
6288: {
6289: PetscErrorCode ierr;
6290: TSMatlabContext *sctx;
6293: /* currently sctx is memory bleed */
6294: PetscMalloc(sizeof(TSMatlabContext),&sctx);
6295: PetscStrallocpy(func,&sctx->funcname);
6296: /*
6297: This should work, but it doesn't
6298: sctx->ctx = ctx;
6299: mexMakeArrayPersistent(sctx->ctx);
6300: */
6301: sctx->ctx = mxDuplicateArray(ctx);
6303: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
6304: return(0);
6305: }
6309: /*
6310: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
6312: Collective on TS
6314: .seealso: TSSetFunction(), TSGetFunction()
6315: @*/
6316: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
6317: {
6318: PetscErrorCode ierr;
6319: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6320: int nlhs = 1,nrhs = 6;
6321: mxArray *plhs[1],*prhs[6];
6322: long long int lx = 0,ls = 0;
6328: PetscMemcpy(&ls,&ts,sizeof(ts));
6329: PetscMemcpy(&lx,&u,sizeof(u));
6331: prhs[0] = mxCreateDoubleScalar((double)ls);
6332: prhs[1] = mxCreateDoubleScalar((double)it);
6333: prhs[2] = mxCreateDoubleScalar((double)time);
6334: prhs[3] = mxCreateDoubleScalar((double)lx);
6335: prhs[4] = mxCreateString(sctx->funcname);
6336: prhs[5] = sctx->ctx;
6337: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
6338: mxGetScalar(plhs[0]);
6339: mxDestroyArray(prhs[0]);
6340: mxDestroyArray(prhs[1]);
6341: mxDestroyArray(prhs[2]);
6342: mxDestroyArray(prhs[3]);
6343: mxDestroyArray(prhs[4]);
6344: mxDestroyArray(plhs[0]);
6345: return(0);
6346: }
6351: /*
6352: TSMonitorSetMatlab - Sets the monitor function from Matlab
6354: Level: developer
6356: .keywords: TS, nonlinear, set, function
6358: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6359: */
6360: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
6361: {
6362: PetscErrorCode ierr;
6363: TSMatlabContext *sctx;
6366: /* currently sctx is memory bleed */
6367: PetscMalloc(sizeof(TSMatlabContext),&sctx);
6368: PetscStrallocpy(func,&sctx->funcname);
6369: /*
6370: This should work, but it doesn't
6371: sctx->ctx = ctx;
6372: mexMakeArrayPersistent(sctx->ctx);
6373: */
6374: sctx->ctx = mxDuplicateArray(ctx);
6376: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
6377: return(0);
6378: }
6379: #endif
6383: /*@C
6384: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6385: in a time based line graph
6387: Collective on TS
6389: Input Parameters:
6390: + ts - the TS context
6391: . step - current time-step
6392: . ptime - current time
6393: . u - current solution
6394: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6396: Options Database:
6397: . -ts_monitor_lg_solution_variables
6399: Level: intermediate
6401: Notes: Each process in a parallel run displays its component solutions in a separate window
6403: .keywords: TS, vector, monitor, view
6405: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6406: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6407: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6408: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6409: @*/
6410: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6411: {
6412: PetscErrorCode ierr;
6413: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6414: const PetscScalar *yy;
6415: Vec v;
6418: if (step < 0) return(0); /* -1 indicates interpolated solution */
6419: if (!step) {
6420: PetscDrawAxis axis;
6421: PetscInt dim;
6422: PetscDrawLGGetAxis(ctx->lg,&axis);
6423: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6424: if (ctx->names && !ctx->displaynames) {
6425: char **displaynames;
6426: PetscBool flg;
6427: VecGetLocalSize(u,&dim);
6428: PetscMalloc((dim+1)*sizeof(char*),&displaynames);
6429: PetscMemzero(displaynames,(dim+1)*sizeof(char*));
6430: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6431: if (flg) {
6432: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6433: }
6434: PetscStrArrayDestroy(&displaynames);
6435: }
6436: if (ctx->displaynames) {
6437: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6438: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6439: } else if (ctx->names) {
6440: VecGetLocalSize(u,&dim);
6441: PetscDrawLGSetDimension(ctx->lg,dim);
6442: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6443: } else {
6444: VecGetLocalSize(u,&dim);
6445: PetscDrawLGSetDimension(ctx->lg,dim);
6446: }
6447: PetscDrawLGReset(ctx->lg);
6448: }
6450: if (!ctx->transform) v = u;
6451: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6452: VecGetArrayRead(v,&yy);
6453: if (ctx->displaynames) {
6454: PetscInt i;
6455: for (i=0; i<ctx->ndisplayvariables; i++)
6456: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6457: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6458: } else {
6459: #if defined(PETSC_USE_COMPLEX)
6460: PetscInt i,n;
6461: PetscReal *yreal;
6462: VecGetLocalSize(v,&n);
6463: PetscMalloc1(n,&yreal);
6464: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6465: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6466: PetscFree(yreal);
6467: #else
6468: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6469: #endif
6470: }
6471: VecRestoreArrayRead(v,&yy);
6472: if (ctx->transform) {VecDestroy(&v);}
6474: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6475: PetscDrawLGDraw(ctx->lg);
6476: PetscDrawLGSave(ctx->lg);
6477: }
6478: return(0);
6479: }
6484: /*@C
6485: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6487: Collective on TS
6489: Input Parameters:
6490: + ts - the TS context
6491: - names - the names of the components, final string must be NULL
6493: Level: intermediate
6495: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6497: .keywords: TS, vector, monitor, view
6499: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6500: @*/
6501: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6502: {
6503: PetscErrorCode ierr;
6504: PetscInt i;
6507: for (i=0; i<ts->numbermonitors; i++) {
6508: if (ts->monitor[i] == TSMonitorLGSolution) {
6509: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6510: break;
6511: }
6512: }
6513: return(0);
6514: }
6518: /*@C
6519: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6521: Collective on TS
6523: Input Parameters:
6524: + ts - the TS context
6525: - names - the names of the components, final string must be NULL
6527: Level: intermediate
6529: .keywords: TS, vector, monitor, view
6531: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6532: @*/
6533: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6534: {
6535: PetscErrorCode ierr;
6538: PetscStrArrayDestroy(&ctx->names);
6539: PetscStrArrayallocpy(names,&ctx->names);
6540: return(0);
6541: }
6545: /*@C
6546: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6548: Collective on TS
6550: Input Parameter:
6551: . ts - the TS context
6553: Output Parameter:
6554: . names - the names of the components, final string must be NULL
6556: Level: intermediate
6558: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6560: .keywords: TS, vector, monitor, view
6562: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6563: @*/
6564: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6565: {
6566: PetscInt i;
6569: *names = NULL;
6570: for (i=0; i<ts->numbermonitors; i++) {
6571: if (ts->monitor[i] == TSMonitorLGSolution) {
6572: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6573: *names = (const char *const *)ctx->names;
6574: break;
6575: }
6576: }
6577: return(0);
6578: }
6582: /*@C
6583: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6585: Collective on TS
6587: Input Parameters:
6588: + ctx - the TSMonitorLG context
6589: . displaynames - the names of the components, final string must be NULL
6591: Level: intermediate
6593: .keywords: TS, vector, monitor, view
6595: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6596: @*/
6597: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6598: {
6599: PetscInt j = 0,k;
6600: PetscErrorCode ierr;
6603: if (!ctx->names) return(0);
6604: PetscStrArrayDestroy(&ctx->displaynames);
6605: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6606: while (displaynames[j]) j++;
6607: ctx->ndisplayvariables = j;
6608: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6609: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6610: j = 0;
6611: while (displaynames[j]) {
6612: k = 0;
6613: while (ctx->names[k]) {
6614: PetscBool flg;
6615: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6616: if (flg) {
6617: ctx->displayvariables[j] = k;
6618: break;
6619: }
6620: k++;
6621: }
6622: j++;
6623: }
6624: return(0);
6625: }
6630: /*@C
6631: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6633: Collective on TS
6635: Input Parameters:
6636: + ts - the TS context
6637: . displaynames - the names of the components, final string must be NULL
6639: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6641: Level: intermediate
6643: .keywords: TS, vector, monitor, view
6645: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6646: @*/
6647: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6648: {
6649: PetscInt i;
6650: PetscErrorCode ierr;
6653: for (i=0; i<ts->numbermonitors; i++) {
6654: if (ts->monitor[i] == TSMonitorLGSolution) {
6655: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6656: break;
6657: }
6658: }
6659: return(0);
6660: }
6664: /*@C
6665: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6667: Collective on TS
6669: Input Parameters:
6670: + ts - the TS context
6671: . transform - the transform function
6672: . destroy - function to destroy the optional context
6673: - ctx - optional context used by transform function
6675: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6677: Level: intermediate
6679: .keywords: TS, vector, monitor, view
6681: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6682: @*/
6683: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6684: {
6685: PetscInt i;
6686: PetscErrorCode ierr;
6689: for (i=0; i<ts->numbermonitors; i++) {
6690: if (ts->monitor[i] == TSMonitorLGSolution) {
6691: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6692: }
6693: }
6694: return(0);
6695: }
6699: /*@C
6700: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6702: Collective on TSLGCtx
6704: Input Parameters:
6705: + ts - the TS context
6706: . transform - the transform function
6707: . destroy - function to destroy the optional context
6708: - ctx - optional context used by transform function
6710: Level: intermediate
6712: .keywords: TS, vector, monitor, view
6714: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6715: @*/
6716: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6717: {
6719: ctx->transform = transform;
6720: ctx->transformdestroy = destroy;
6721: ctx->transformctx = tctx;
6722: return(0);
6723: }
6727: /*@C
6728: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the solution vector
6729: in a time based line graph
6731: Collective on TS
6733: Input Parameters:
6734: + ts - the TS context
6735: . step - current time-step
6736: . ptime - current time
6737: . u - current solution
6738: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6740: Level: intermediate
6742: Notes: Each process in a parallel run displays its component errors in a separate window
6744: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6746: Options Database Keys:
6747: . -ts_monitor_lg_error - create a graphical monitor of error history
6749: .keywords: TS, vector, monitor, view
6751: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6752: @*/
6753: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6754: {
6755: PetscErrorCode ierr;
6756: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6757: const PetscScalar *yy;
6758: Vec y;
6761: if (!step) {
6762: PetscDrawAxis axis;
6763: PetscInt dim;
6764: PetscDrawLGGetAxis(ctx->lg,&axis);
6765: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Solution");
6766: VecGetLocalSize(u,&dim);
6767: PetscDrawLGSetDimension(ctx->lg,dim);
6768: PetscDrawLGReset(ctx->lg);
6769: }
6770: VecDuplicate(u,&y);
6771: TSComputeSolutionFunction(ts,ptime,y);
6772: VecAXPY(y,-1.0,u);
6773: VecGetArrayRead(y,&yy);
6774: #if defined(PETSC_USE_COMPLEX)
6775: {
6776: PetscReal *yreal;
6777: PetscInt i,n;
6778: VecGetLocalSize(y,&n);
6779: PetscMalloc1(n,&yreal);
6780: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6781: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6782: PetscFree(yreal);
6783: }
6784: #else
6785: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6786: #endif
6787: VecRestoreArrayRead(y,&yy);
6788: VecDestroy(&y);
6789: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6790: PetscDrawLGDraw(ctx->lg);
6791: PetscDrawLGSave(ctx->lg);
6792: }
6793: return(0);
6794: }
6798: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6799: {
6800: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6801: PetscReal x = ptime,y;
6803: PetscInt its;
6806: if (n < 0) return(0); /* -1 indicates interpolated solution */
6807: if (!n) {
6808: PetscDrawAxis axis;
6809: PetscDrawLGGetAxis(ctx->lg,&axis);
6810: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
6811: PetscDrawLGReset(ctx->lg);
6812: ctx->snes_its = 0;
6813: }
6814: TSGetSNESIterations(ts,&its);
6815: y = its - ctx->snes_its;
6816: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6817: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6818: PetscDrawLGDraw(ctx->lg);
6819: PetscDrawLGSave(ctx->lg);
6820: }
6821: ctx->snes_its = its;
6822: return(0);
6823: }
6827: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6828: {
6829: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6830: PetscReal x = ptime,y;
6832: PetscInt its;
6835: if (n < 0) return(0); /* -1 indicates interpolated solution */
6836: if (!n) {
6837: PetscDrawAxis axis;
6838: PetscDrawLGGetAxis(ctx->lg,&axis);
6839: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
6840: PetscDrawLGReset(ctx->lg);
6841: ctx->ksp_its = 0;
6842: }
6843: TSGetKSPIterations(ts,&its);
6844: y = its - ctx->ksp_its;
6845: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6846: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6847: PetscDrawLGDraw(ctx->lg);
6848: PetscDrawLGSave(ctx->lg);
6849: }
6850: ctx->ksp_its = its;
6851: return(0);
6852: }
6856: /*@
6857: TSComputeLinearStability - computes the linear stability function at a point
6859: Collective on TS and Vec
6861: Input Parameters:
6862: + ts - the TS context
6863: - xr,xi - real and imaginary part of input arguments
6865: Output Parameters:
6866: . yr,yi - real and imaginary part of function value
6868: Level: developer
6870: .keywords: TS, compute
6872: .seealso: TSSetRHSFunction(), TSComputeIFunction()
6873: @*/
6874: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
6875: {
6880: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
6881: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
6882: return(0);
6883: }
6885: /* ------------------------------------------------------------------------*/
6888: /*@C
6889: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
6891: Collective on TS
6893: Input Parameters:
6894: . ts - the ODE solver object
6896: Output Parameter:
6897: . ctx - the context
6899: Level: intermediate
6901: .keywords: TS, monitor, line graph, residual, seealso
6903: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
6905: @*/
6906: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
6907: {
6911: PetscNew(ctx);
6912: return(0);
6913: }
6917: /*@C
6918: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
6920: Collective on TS
6922: Input Parameters:
6923: + ts - the TS context
6924: . step - current time-step
6925: . ptime - current time
6926: . u - current solution
6927: - dctx - the envelope context
6929: Options Database:
6930: . -ts_monitor_envelope
6932: Level: intermediate
6934: Notes: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
6936: .keywords: TS, vector, monitor, view
6938: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
6939: @*/
6940: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6941: {
6942: PetscErrorCode ierr;
6943: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
6946: if (!ctx->max) {
6947: VecDuplicate(u,&ctx->max);
6948: VecDuplicate(u,&ctx->min);
6949: VecCopy(u,ctx->max);
6950: VecCopy(u,ctx->min);
6951: } else {
6952: VecPointwiseMax(ctx->max,u,ctx->max);
6953: VecPointwiseMin(ctx->min,u,ctx->min);
6954: }
6955: return(0);
6956: }
6961: /*@C
6962: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
6964: Collective on TS
6966: Input Parameter:
6967: . ts - the TS context
6969: Output Parameter:
6970: + max - the maximum values
6971: - min - the minimum values
6973: Notes: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
6975: Level: intermediate
6977: .keywords: TS, vector, monitor, view
6979: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6980: @*/
6981: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
6982: {
6983: PetscInt i;
6986: if (max) *max = NULL;
6987: if (min) *min = NULL;
6988: for (i=0; i<ts->numbermonitors; i++) {
6989: if (ts->monitor[i] == TSMonitorEnvelope) {
6990: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
6991: if (max) *max = ctx->max;
6992: if (min) *min = ctx->min;
6993: break;
6994: }
6995: }
6996: return(0);
6997: }
7001: /*@C
7002: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7004: Collective on TSMonitorEnvelopeCtx
7006: Input Parameter:
7007: . ctx - the monitor context
7009: Level: intermediate
7011: .keywords: TS, monitor, line graph, destroy
7013: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7014: @*/
7015: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7016: {
7020: VecDestroy(&(*ctx)->min);
7021: VecDestroy(&(*ctx)->max);
7022: PetscFree(*ctx);
7023: return(0);
7024: }
7028: /*@
7029: TSRollBack - Rolls back one time step
7031: Collective on TS
7033: Input Parameter:
7034: . ts - the TS context obtained from TSCreate()
7036: Level: advanced
7038: .keywords: TS, timestep, rollback
7040: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7041: @*/
7042: PetscErrorCode TSRollBack(TS ts)
7043: {
7048: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7049: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7050: (*ts->ops->rollback)(ts);
7051: ts->time_step = ts->ptime - ts->ptime_prev;
7052: ts->ptime = ts->ptime_prev;
7053: ts->ptime_prev = ts->ptime_prev_rollback;
7054: ts->steps--; ts->total_steps--;
7055: ts->steprollback = PETSC_TRUE;
7056: return(0);
7057: }
7061: /*@
7062: TSGetStages - Get the number of stages and stage values
7064: Input Parameter:
7065: . ts - the TS context obtained from TSCreate()
7067: Level: advanced
7069: .keywords: TS, getstages
7071: .seealso: TSCreate()
7072: @*/
7073: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7074: {
7081: if (!ts->ops->getstages) *ns=0;
7082: else {
7083: (*ts->ops->getstages)(ts,ns,Y);
7084: }
7085: return(0);
7086: }
7090: /*@C
7091: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7093: Collective on SNES
7095: Input Parameters:
7096: + ts - the TS context
7097: . t - current timestep
7098: . U - state vector
7099: . Udot - time derivative of state vector
7100: . shift - shift to apply, see note below
7101: - ctx - an optional user context
7103: Output Parameters:
7104: + J - Jacobian matrix (not altered in this routine)
7105: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7107: Level: intermediate
7109: Notes:
7110: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7112: dF/dU + shift*dF/dUdot
7114: Most users should not need to explicitly call this routine, as it
7115: is used internally within the nonlinear solvers.
7117: This will first try to get the coloring from the DM. If the DM type has no coloring
7118: routine, then it will try to get the coloring from the matrix. This requires that the
7119: matrix have nonzero entries precomputed.
7121: .keywords: TS, finite differences, Jacobian, coloring, sparse
7122: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7123: @*/
7124: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7125: {
7126: SNES snes;
7127: MatFDColoring color;
7128: PetscBool hascolor, matcolor = PETSC_FALSE;
7132: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7133: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7134: if (!color) {
7135: DM dm;
7136: ISColoring iscoloring;
7138: TSGetDM(ts, &dm);
7139: DMHasColoring(dm, &hascolor);
7140: if (hascolor && !matcolor) {
7141: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7142: MatFDColoringCreate(B, iscoloring, &color);
7143: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7144: MatFDColoringSetFromOptions(color);
7145: MatFDColoringSetUp(B, iscoloring, color);
7146: ISColoringDestroy(&iscoloring);
7147: } else {
7148: MatColoring mc;
7150: MatColoringCreate(B, &mc);
7151: MatColoringSetDistance(mc, 2);
7152: MatColoringSetType(mc, MATCOLORINGSL);
7153: MatColoringSetFromOptions(mc);
7154: MatColoringApply(mc, &iscoloring);
7155: MatColoringDestroy(&mc);
7156: MatFDColoringCreate(B, iscoloring, &color);
7157: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7158: MatFDColoringSetFromOptions(color);
7159: MatFDColoringSetUp(B, iscoloring, color);
7160: ISColoringDestroy(&iscoloring);
7161: }
7162: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7163: PetscObjectDereference((PetscObject) color);
7164: }
7165: TSGetSNES(ts, &snes);
7166: MatFDColoringApply(B, color, U, snes);
7167: if (J != B) {
7168: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7169: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7170: }
7171: return(0);
7172: }
7176: /*@
7177: TSSetFunctionDomainError - Set the function testing if the current state vector is valid
7179: Input Parameters:
7180: ts - the TS context
7181: func - function called within TSFunctionDomainError
7183: Level: intermediate
7185: .keywords: TS, state, domain
7186: .seealso: TSAdaptCheckStage(), TSFunctionDomainError()
7187: @*/
7189: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7190: {
7193: ts->functiondomainerror = func;
7194: return(0);
7195: }
7199: /*@
7200: TSFunctionDomainError - Check if the current state is valid
7202: Input Parameters:
7203: ts - the TS context
7204: stagetime - time of the simulation
7205: Y - state vector to check.
7207: Output Parameter:
7208: accept - Set to PETSC_FALSE if the current state vector is valid.
7210: Note:
7211: This function should be used to ensure the state is in a valid part of the space.
7212: For example, one can ensure here all values are positive.
7214: Level: advanced
7215: @*/
7216: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7217: {
7223: *accept = PETSC_TRUE;
7224: if (ts->functiondomainerror) {
7225: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7226: }
7227: return(0);
7228: }
7230: #undef __FUNCT__
7232: /*@C
7233: TSClone - This function clones a time step object.
7235: Collective on MPI_Comm
7237: Input Parameter:
7238: . tsin - The input TS
7240: Output Parameter:
7241: . tsout - The output TS (cloned)
7243: Notes:
7244: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7246: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7248: Level: developer
7250: .keywords: TS, clone
7251: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7252: @*/
7253: PetscErrorCode TSClone(TS tsin, TS *tsout)
7254: {
7255: TS t;
7257: SNES snes_start;
7258: DM dm;
7259: TSType type;
7263: *tsout = NULL;
7265: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7267: /* General TS description */
7268: t->numbermonitors = 0;
7269: t->setupcalled = 0;
7270: t->ksp_its = 0;
7271: t->snes_its = 0;
7272: t->nwork = 0;
7273: t->rhsjacobian.time = -1e20;
7274: t->rhsjacobian.scale = 1.;
7275: t->ijacobian.shift = 1.;
7277: TSGetSNES(tsin,&snes_start);
7278: TSSetSNES(t,snes_start);
7280: TSGetDM(tsin,&dm);
7281: TSSetDM(t,dm);
7283: t->adapt = tsin->adapt;
7284: PetscObjectReference((PetscObject)t->adapt);
7286: t->problem_type = tsin->problem_type;
7287: t->ptime = tsin->ptime;
7288: t->time_step = tsin->time_step;
7289: t->max_time = tsin->max_time;
7290: t->steps = tsin->steps;
7291: t->max_steps = tsin->max_steps;
7292: t->equation_type = tsin->equation_type;
7293: t->atol = tsin->atol;
7294: t->rtol = tsin->rtol;
7295: t->max_snes_failures = tsin->max_snes_failures;
7296: t->max_reject = tsin->max_reject;
7297: t->errorifstepfailed = tsin->errorifstepfailed;
7299: TSGetType(tsin,&type);
7300: TSSetType(t,type);
7302: t->vec_sol = NULL;
7304: t->cfltime = tsin->cfltime;
7305: t->cfltime_local = tsin->cfltime_local;
7306: t->exact_final_time = tsin->exact_final_time;
7308: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7310: if (((PetscObject)tsin)->fortran_func_pointers) {
7311: PetscInt i;
7312: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7313: for (i=0; i<10; i++) {
7314: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7315: }
7316: }
7317: *tsout = t;
7318: return(0);
7319: }