The Z Shell Manual

Version 5.9
Updated May 14, 2022

Original documentation by Paul Falstad

This is a texinfo version of the documentation for the Z Shell, originally by Paul Falstad.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided also that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Table of Contents

1 The Z Shell Manual 1
1.1 Producing documentation from zsh.texi 1

2 Introduction.......... 1
2.1 AULOT . oo 1
2.2 Availability 1
2.3 Mailing Lists. . ..ot 2
2.4 The Zsh FAQ 2
2.5 The Zsh Web Page. ... e 2
2.6 The Zsh Userguide.ooonuuiii e e 2
2.7 SE ALSO . it 3

3 Roadmap......... ... 3
3.1 When the shell starts ... e 3
3.2 Interactive Use. ... e 3
3.2. 1 CompPletionttt 4

3.2.2 Extending the line editor......... ... 4

3.3 ODHIOMIS . . v ettt 4
3.4 Pattern Matching i 4
3.5 General Comments ON SYNEAKttt e e e 5
3.6 Programmingttt e 5

4 Invocation............... i 5
4.1 INVOCAEION . . oottt 5
4.2 Compatibilibyo 6
4.3 Restricted Shell. 7

5 Files. ... 8
5.1 Startup/Shutdown Files........ ... o 8
0.2 FleS . oottt 9

6 Shell Grammar 9
6.1 Simple Commands & Pipelines. 9
6.2 Precommand Modifiersot 10
6.3 Complex COmMMAndSttt e e e 11
6.4 Alternate Forms For Complex Commands...............cooiiiiiiiiiiiiiieaan... 14
6.5 Reserved WoOrds 15
0.6 orTOrS . oot 15
6.7 COMIMENTS .« o ottt ettt ettt e et e ettt e et e e e e e e 16
6.8 ALIASIIIE . ..ottt 16
6.8.1 Alias difficulties. 16

6.9 QUOBIIE . o oot e 17

7 Redirection.......... 17
7.1 Opening file descriptors USing parametersc..eevirrte it ennineeennnnn.. 19
7.2 MUIBIOS . o ot 20

7.3 Redirections with no command. 21

8 Command Execution, 22
9 Functions 22
9.1 Autoloading Functions. e 22
9.2 Anonymous Functions i 24
9.3 Special FUnctions 25
9.3.1 HoOK FUNCHIONSo 25
9.3.2 Trap Functions 26

10 Jobs & Signals............... . 27
10,0 0D . ottt 27
10.2 Signals . ..o 28
11 Arithmetic Evaluation....................................... 29
12 Conditional Expressions................ 32
13 Prompt Expansion.................. 35
13.1 Expansion of Prompt Sequences i 35
13.2 Simple Prompt EScapes. 35
13.2.1 Special CharaCters.ot 36
13.2.2 Login information......... ... e 36
13.2.3 Shell State e 36
13.2.4 Date and time e 37
13.2.5 Visual effectso 38

13.3 Conditional Substrings in Prompts............c i 38
14 EXpansionooiiiiiiiii 40
14.1 History EXpansion 41
T4 1.1 OVOIVIEW oottt e ettt et e e e e e e e 41
14.1.2 Event Designators 42
14.1.3 Word Designators.ttt e 42
14.1.4 MOIIErS . . .ot 43

14.2 Process SubStitUtiont 45
14.3 Parameter EXpansion 47
14.3.1 Parameter Expansion Flags........ ... i i 51
14.3.2 RULES . .ot 58
14.3.3 EXamples 61

14.4 Command Substitutiono i 62
14.5 Arithmetic EXpansion 62
14.6 Brace EXpansion.ooouii i e 62
14.7 Filename EXPansionouoeoeitnin i e 63
14.7.1 Dynamic named directories 63
14.7.2 Static named directories e 64
14.7.3 ‘=" @XPANSION . . o o\ttt 65

LA T4 NOES . oottt 65

14.8 Filename Generation.o.o.uuoiint it 65
14.8.1 GIOD OPErators . ..ottt ettt e e et e 65
14.8.2 ksh-like Glob Operators.coiiiiii e 68
14.8.3 Precedence 68

14.8.4 Globbing Flags e 68

14.8.5 Approximate Matchingot i 70
14.8.6 Recursive Globbing i 71
14.8.7 Glob Qualifiers i 72
15 Parameters............. i 77
15,1 DesCription . ..o e 7
15.2 Array Parameters. e 7
15.2.1 Array SUDSCIIDES .« ottt 79
15.2.2 Array Element ASSIgnment.ooiuiiiiiiii 80
15.2.3 Subscript Flagso 80
15.2.4 Subscript Parsing e 82
15.3 Positional Parameters.o i 83
15.4 Local Parameters. ... e 84
15.5 Parameters Set By The Shell ... 84
15.6 Parameters Used By The Shell....o 89
16 OPptions. 97
16.1 Specifying Options.ottt e e 98
16.2 Description of Options. e 98
16.2.1 Changing Directories.ttt e 98
16.2.2 Completiont 99
16.2.3 Expansion and Globbing........ ..o 101
16.2.4 HiStOTY o oo e 105
16.2.5 Initialisation.o e 107
16.2.6 Input/Outputooiui 108
16.2.7 Job Control 110
16.2.8 Promplting.o 111
16.2.9 Scripts and Functions. e 112
16.2.10 Shell Emulation 115
16.2.11 Shell State ...t 119
16.2.12 Zle .ot 120
16.3 Option AlASES. . ..ottt 121
16.4 Single Letter Options.t e 121
16.4.1 Default seto 121
16.4.2 sh/ksh emulation Set...........ouiuiuieiii i 123
16.4.3 AlSO NOTE . o o ettt e e 123
17 Shell Builtin Commands................................ ... 124
18 Zsh Line Editor............... 163
18.1 DeSCTIPtiON . . . ve et e 164
18.2 KOy Ia DS . o v vttt ettt et e 164
18.2.1 Reading Commandsouuuiiinnii e 165
18.2.2 Local Keymapsottt e 165
18.3 Zle BUuiltins.o e 165
18.4 Zle WId@ets . ..o oo 174
18.5 User-Defined Widgetso e 174
18.5.1 Special Widgetsot 179
18.6 Standard WIdgetsvv e e 180
18.6.1 MOVEIMENTttt ettt e e 180
18.6.2 History Control. e 182

18.6.3 Modifying Texto 186

18.6.4 ATrGUIMENES . . oottt ettt e e 190
18.6.5 Completion e 191
18.6.6 Miscellaneous.t e 192
18.6.7 Text ObJeCts .ottt 197
18.7 Character Highlighting 197
19 Completion Widgets ... 200
191 DeSCription . . oottt 200
19.2 Completion Special Parameters 201
19.3 Completion Builtin Commands e 206
19.4 Completion Condition Codesouinniiii e 211
19.5 Completion Matching Control i i 212
19.6 Completion Widget Example 215
20 Completion System 215
20.1 DeSCTiptIOn . . o oo e 215
20.2 Initialization e 216
20.2.1 Use of compinit. e 217
20.2.2 Autoloaded fillest 218
20.2.3 FUNCHIONS. . o 221
20.3 Completion System Configuration., 222
20.3. 1 OVEIVIEW « vt ettt et et e et e e e e e e e 222
20.3.2 Standard Tags 224
20.3.3 Standard Styles........oo 228
20.4 Control FUNCHIONSot 251
20.5 Bindable Commands.t e 256
20.6 Utility FUnctions e 259
20.7 Completion System Variables........ ... i 284
20.8 Completion Directories e e 284
21 Completion Using compct]l 285
21.1 Types of compPletionvnt e 285
21,2 DeSCIiPtION . . o oo e 285
21.3 Command Flagso e 286
21.4 Option Flags 287
21.4.1 Simple Flags.o 287
21.4.2 Flags with Argumentst i 288
21.4.3 Control Flags. 289
21.5 Alternative Completiont 292
21.6 Extended Completion.iii i e 292
21.7 EXaADIE . oo 293
22 Zsh Modules..... 294
22. 1 DeSCTIPtION . o o ot 294
22.2 The zsh/attr Module 295
22.3 The zsh/cap Module. 296
22.4 The zsh/clone Module....... ... 296
22.5 The zsh/compctl Module 297
22.6 The zsh/complete Module i 297
22.7 The zsh/complist Module......... i 297
22.7.1 Colored completion LStINgGsoovvntin i 297

22.7.2 Scrolling in completion listings. ... 299

22.7.3 Menu selection. i 299
22.8 The zsh/computil Module 302
22.9 The zsh/curses Module 303

2291 Builbin 304

22.9.2 Parameters......... ... 307
22.10 The zsh/datetime Module 307
22.11 The zsh/db/gdbm Module.......... ... i 308
22.12 The zsh/deltochar Module.......... ... i 309
22.13 The zsh/example Module. 309
22.14 The zsh/files Module 310
22.15 The zsh/langinfo Module........ i 312
22.16 The zsh/mapfile Module. i 312

22.16.1 Limitations.........oouiiii 313
22.17 The zsh/mathfunc Module...... 313
22.18 The zsh/nearcolor Module......... i 314
22.19 The zsh/newuser Module. 314
22.20 The zsh/parameter Module......... 315
22.21 The zsh/pcre Module. 318
22.22 The zsh/param/private Module........... 319
22.23 The zsh/regex Module. 321
22.24 The zsh/sched Module. i 321
22.25 The zsh/net/socket Module.o i 322

22.25.1 Outbound Connectionso 322

22.25.2 Inbound Connections.......... i i 322
22.26 The zsh/stat Module...... 323
22.27 The zsh/system Module i 325

22.27.1 Builtinso 325

22.27.2 Math Functions 328

22.27.3 Parameters............. 328
22.28 The zsh/net/tcp Module 328

22.28.1 Outbound Connections 329

22.28.2 Inbound Connections............. .. . 329

22.28.3 Closing Conmnections . .« .. .uutt ettt et e e e 329

22.28.4 Exampleo 330
22.29 The zsh/termcap Module...... ... 330
22.30 The zsh/terminfo Module........ 330
22.31 The zsh/watch Module....... 331
22.32 The zsh/zftp Module 332

22.32.1 Subcommands. ... 332

22.32.2 Parameters.......... ... 336

22.32.3 Functions ... 338

22.32.4 Problems. 338
22.33 The zsh/zle Module 339
22.34 The zsh/zleparameter Module i 339
22.35 The zsh/zprof Module. 339
22.36 The zsh/zpty Module....... 340
22.37 The zsh/zselect Module 341
22.38 The zsh/zutil Module 342

23 Calendar Function System................................. 347
23. 1 DeSCTiPtiOn . « oot e 347
23.2 File and Date Formats............ 348

23.2.1 Calendar File Format 348

23.2.2 Date Format.o 348

23.2.3 Relative Time Formato i 350
23.2.4 EXAIMPIE. . oot e 351
23.3 User FUNCHIONS 351
23.3.1 Calendar system functionso 351
23.3.2 Glob qualifiers. 356
2304 SEYLeS . et 357
23.5 Utility functions.o 358
23,0 Bl . oo 359
24 TCP Function System ..., 359
241 DeSCTiption . . oot e 359
24.2 TCP User FUNCHONSt e 360
24.2.1 Basic I/O ..o 360
24.2.2 Session Management it e 362
24.2.3 Advanced T/Oo 363
24.2.4 ‘One-shot’ file transfer 365
24.3 TCP User-defined Functions 365
24.4 TCP Utility Functions.oouii e e 366
24.5 TCP User Parameterst 367
24.6 TCP User-defined Parameterst 369
24.7 TCP Utility Parametersoouti i e 369
24.8 TCP EXamples e 369
24,9 TOP BuUgS . .« ettt 370
25 Zftp Function System 370
25. 1 DeSCTiPtiOn . « oo e 370
25.2 Installation. 370
25.3 FUNCHIONS . ..ot 371
25.3.1 Opening a CONMECTIONttt e 371
25.3.2 Directory management.ttt 371
25.3.3 Status cCOmMMANASttt e 372
25.3.4 Retrieving fileso e 373
25.3.5 Sending flles 373
25.3.6 Closing the connection.......... ... i 374
25.3.7 Session MAanAGEIENTottt ettt et e et e e e 374
25.3.8 Bookmarks 375
25.3.9 Other functions. 375
25.4 Miscellaneous Featureso oo e 376
25.4.1 Configuration. 376
25.4.2 Remote globbing. ... e 377
25.4.3 Automatic and temporary reOPeningttt 378
25.4.4 Completionuut it e 378
26 User Contributions..................... 378
26.1 DeSCTiption . « oo e 379
26.2 UtIHbIes . .o oot e 379
26.2.1 Accessing On-Line Help. 379
26.2.2 Recompiling Functions. 379
26.2.3 Keyboard Definition i 381
26.2.4 Dumping Shell State..... ..o 381
26.2.5 Manipulating Hook Functions........... . .. i i i 382
26.3 Remembering Recent Directories....... ... i 384

26.3.1 Installation 384

26.3.2 Sttt 384
26.3.3 OPTIONS .« ot ettt et et e 384
26.3.4 Configuration.o 385
26.3.5 Use with dynamic directory naming............ ... cciiiiiiiiiiieiie... 387
26.3.6 Details of directory handling..........o i i 387

26.4 Abbreviated dynamic references to directories............. ..., 387
26.4.1 USAZE « vttt e e 388
26.4.2 Configuration.o i e 388
26.4.3 Complete examplet e 389

26.5 Gathering information from version control systems.................. 390
26.5.1 QUICKSEATt . ..ottt 391
26.5.2 Configuration.ttt e 392
26.5.3 Odditiesottt 398
26.5.4 QUIlt SUPPOTT .. oottt 398
26.5.5 Function Descriptions (Public APT) i 399
26.5.6 Variable Description i 400
26.5.7 Hooks in ves_info o 400
26.5.8 Examples.o 403

26.6 Prompt Themes e e 405
26.6.1 Imstallationo 405
26.6.2 Theme Selectiont 406
26.6.3 Utility Themest e 406
26.6.4 Writing Themest 407

26.7 ZLE FUNCHONS . ..ottt et e e e e e 407
26.7. 1 WAAEtS - o oottt 407
26.7.2 Utility Functions 424
26.7.3 SUYLES it e 425

26.8 Exception Handling i e 427
26.9 MIME FUunctionso.uoiin i e et 429
26.10 Mathematical Functions e 434
26.11 User Configuration Functions.......... ... i, 437
26.12 Other FUNCHIONSt e e e 438
26.12.1 DeSCriptions . .« oot e 438
26.12.2 Sy LeS .ttt 444
Concept Index 445
Variables Index 451
Options Index.. ... 455
Functions Index.......... 462
Editor Functions Index............... 466

Style and Tag Index........... i i 469

Chapter 2: Introduction 1

1 The Z Shell Manual

This document has been produced from the texinfo file zsh.texi, included in the Doc sub-
directory of the Zsh distribution.

1.1 Producing documentation from zsh.texi

The texinfo source may be converted into several formats:

The Info manual
The Info format allows searching for topics, commands, functions, etc. from the
many Indices. The command ‘makeinfo zsh.texi’ is used to produce the Info
documentation.

The printed manual
The command ‘texi2dvi zsh.texi’ will output zsh.dvi which can then be pro-
cessed with dvips and optionally gs (Ghostscript) to produce a nicely formatted
printed manual.

The HTML manual
An HTML version of this manual is available at the Zsh web site via:
https://zsh.sourceforge.io/Doc/.
(The HTML version is produced with texi2html, which may be obtained from
http://www.nongnu.org/texi2html/. The command is ‘texi2html --output .

—--ifinfo --split=chapter --node-files zsh.texi’. If necessary, upgrade to
version 1.78 of texi2html.)

For those who do not have the necessary tools to process texinfo, precompiled documentation
(PostScript, dvi, PDF, info and HTML formats) is available from the zsh archive site or its
mirrors, in the file zsh-doc.tar.gz. (See Section 2.2 [Availability]|, page 1, for a list of sites.)

2 Introduction

Zsh is a UNIX command interpreter (shell) usable as an interactive login shell and as a shell
script command processor. Of the standard shells, zsh most closely resembles ksh but includes
many enhancements. It does not provide compatibility with POSIX or other shells in its default
operating mode: see the section Section 4.2 [Compatibility], page 6.

Zsh has command line editing, builtin spelling correction, programmable command completion,
shell functions (with autoloading), a history mechanism, and a host of other features.

2.1 Author

Zsh was originally written by Paul Falstad. Zsh is now maintained by the members of the zsh-
workers mailing list <zsh-workers@zsh.org>. The development is currently coordinated by Pe-
ter Stephenson <pws@zsh.org>. The coordinator can be contacted at <coordinator@zsh.org>,
but matters relating to the code should generally go to the mailing list.

2.2 Availability

Zsh is available from the following HTTP and anonymous FTP site.
ftp://ftp.zsh.org/pub/

https://www.zsh.org/pub/

The up-to-date source code is available via Git from Sourceforge. See
https://sourceforge.net/projects/zsh/ for details. A summary of instructions
for the archive can be found at https://zsh.sourceforge.io/.

https://zsh.sourceforge.io/Doc/
http://www.nongnu.org/texi2html/
ftp://ftp.zsh.org/pub/
https://www.zsh.org/pub/
https://sourceforge.net/projects/zsh/
https://zsh.sourceforge.io/

Chapter 2: Introduction 2

2.3 Mailing Lists

Zsh has several mailing lists:

<zsh-announce@zsh.org>
Announcements about releases, major changes in the shell and the monthly posting
of the Zsh FAQ. (moderated)

<zsh-users@zsh.org>
User discussions.

<zsh-workers@zsh.org>
Hacking, development, bug reports and patches.

<zsh-security@zsh.org>
Private mailing list (the general public cannot subscribe to it) for discussing bug
reports with security implications, i.e., potential vulnerabilities.

If you find a security problem in zsh itself, please mail this address.

To subscribe or unsubscribe, send mail to the associated administrative address for the mailing
list.

<zsh-announce-subscribe@zsh.org>
<zsh-users-subscribe@zsh.org>
<zsh-workers-subscribe@zsh.org>
<zsh-announce-unsubscribe@zsh.org>
<zsh-users-unsubscribe@zsh.org>
<zsh-workers—-unsubscribe@zsh.org>

YOU ONLY NEED TO JOIN ONE OF THE MAILING LISTS AS THEY ARE NESTED.
All submissions to zsh-announce are automatically forwarded to zsh-users. All submissions to
zsh-users are automatically forwarded to zsh-workers.

If you have problems subscribing/unsubscribing to any of the mailing lists, send mail to
<listmaster®@zsh.org>.

The mailing lists are archived; the archives can be accessed via the administrative addresses
listed above. There is also a hypertext archive available at https://www.zsh.org/mla/.

2.4 The Zsh FAQ

Zsh has a list of Frequently Asked Questions (FAQ), maintained by Peter Stephenson
<pws@zsh.org>. It is regularly posted to the newsgroup comp.unix.shell and the
zsh-announce mailing list. The latest version can be found at any of the Zsh FTP
sites, or at https://www.zsh.org/FAQ/. The contact address for FAQ-related matters is
<fagmaster@zsh.org>.

2.5 The Zsh Web Page

Zsh has a web page which is located at https://www.zsh.org/. The contact address for web-
related matters is <webmaster@zsh.org>.

2.6 The Zsh Userguide

A userguide is currently in preparation. It is intended to complement the manual, with expla-
nations and hints on issues where the manual can be cabbalistic, hierographic, or downright
mystifying (for example, the word ‘hierographic’ does not exist). It can be viewed in its current
state at https://zsh.sourceforge.io/Guide/. At the time of writing, chapters dealing with
startup files and their contents and the new completion system were essentially complete.

https://www.zsh.org/mla/
https://www.zsh.org/FAQ/
https://www.zsh.org/
https://zsh.sourceforge.io/Guide/

Chapter 3: Roadmap 3

2.7 See Also
sh(1), esh(1), tesh(1), re(1), bash(1), ksh(1)

IEEE Standard for information Technology - Portable Operating System Interface (POSIX) -
Part 2: Shell and Utilities, IEEE Inc, 1993, ISBN 1-55937-255-9.

3 Roadmap

The Zsh Manual, like the shell itself, is large and often complicated. This section of the manual
provides some pointers to areas of the shell that are likely to be of particular interest to new
users, and indicates where in the rest of the manual the documentation is to be found.

3.1 When the shell starts

When it starts, the shell reads commands from various files. These can be created or edited to
customize the shell. See Chapter 5 [Files], page 8.

If no personal initialization files exist for the current user, a function is run to help you
change some of the most common settings. It won’t appear if your administrator has dis-
abled the zsh/newuser module. The function is designed to be self-explanatory. You can run
it by hand with ‘autoload -Uz zsh-newuser-install; zsh-newuser-install -f’. See also
Section 26.11 [User Configuration Functions], page 437.

3.2 Interactive Use

Interaction with the shell uses the builtin Zsh Line Editor, ZLE. This is described in detail in
Chapter 18 [Zsh Line Editor]|, page 163.

The first decision a user must make is whether to use the Emacs or Vi editing mode as the
keys for editing are substantially different. Emacs editing mode is probably more natural for
beginners and can be selected explicitly with the command bindkey -e.

A history mechanism for retrieving previously typed lines (most simply with the Up or Down
arrow keys) is available; note that, unlike other shells, zsh will not save these lines when the shell
exits unless you set appropriate variables, and the number of history lines retained by default is
quite small (30 lines). See the description of the shell variables (referred to in the documentation
as parameters) HISTFILE, HISTSIZE and SAVEHIST in Section 15.6 [Parameters Used By The
Shell], page 89. Note that it’s currently only possible to read and write files saving history when
the shell is interactive, i.e. it does not work from scripts.

The shell now supports the UTF-8 character set (and also others if supported by the oper-
ating system). This is (mostly) handled transparently by the shell, but the degree of sup-
port in terminal emulators is variable. There is some discussion of this in the shell FAQ,
https://www.zsh.org/FAQ/. Note in particular that for combining characters to be handled
the option COMBINING_CHARS needs to be set. Because the shell is now more sensitive to the
definition of the character set, note that if you are upgrading from an older version of the shell
you should ensure that the appropriate variable, either LANG (to affect all aspects of the shell’s
operation) or LC_CTYPE (to affect only the handling of character sets) is set to an appropriate
value. This is true even if you are using a single-byte character set including extensions of
ASCII such as IS0-8859-1 or I80-8859-15. See the description of LC_CTYPE in Chapter 15
[Parameters], page 77.

https://www.zsh.org/FAQ/

Chapter 3: Roadmap 4

3.2.1 Completion

Completion is a feature present in many shells. It allows the user to type only a part (usually
the prefix) of a word and have the shell fill in the rest. The completion system in zsh is
programmable. For example, the shell can be set to complete email addresses in arguments to
the mail command from your ~/.abook/addressbook; usernames, hostnames, and even remote
paths in arguments to scp, and so on. Anything that can be written in or glued together with
zsh can be the source of what the line editor offers as possible completions.

Zsh has two completion systems, an old, so called compctl completion (named after the builtin
command that serves as its complete and only user interface), and a new one, referred to as
compsys, organized as library of builtin and user-defined functions. The two systems differ in
their interface for specifying the completion behavior. The new system is more customizable and
is supplied with completions for many commonly used commands; it is therefore to be preferred.

The completion system must be enabled explicitly when the shell starts. For more information
see Chapter 20 [Completion System], page 215.

3.2.2 Extending the line editor

Apart from completion, the line editor is highly extensible by means of shell functions. Some
useful functions are provided with the shell; they provide facilities such as:

insert-composed-char
composing characters not found on the keyboard

match-words-by-style
configuring what the line editor considers a word when moving or deleting by word

history-beginning-search-backward-end, etc.
alternative ways of searching the shell history

replace-string, replace-pattern
functions for replacing strings or patterns globally in the command line

edit-command-line
edit the command line with an external editor.

See Section 26.7 [ZLE Functions], page 407, for descriptions of these.

3.3 Options

The shell has a large number of options for changing its behaviour. These cover all aspects of
the shell; browsing the full documentation is the only good way to become acquainted with the
many possibilities. See Chapter 16 [Options], page 97.

3.4 Pattern Matching

The shell has a rich set of patterns which are available for file matching (described in the
documentation as ‘filename generation’ and also known for historical reasons as ‘globbing’) and
for use when programming. These are described in Section 14.8 [Filename Generation], page 65.

Of particular interest are the following patterns that are not commonly supported by other
systems of pattern matching:

*%k for matching over multiple directories
for matching either of two alternatives

the ability to exclude patterns from matching when the EXTENDED_GLOB option is
set

Chapter 4: Invocation 5

C..) glob qualifiers, included in parentheses at the end of the pattern, which select files
by type (such as directories) or attribute (such as size).

3.5 General Comments on Syntax

Although the syntax of zsh is in ways similar to the Korn shell, and therefore more remotely to
the original UNIX shell, the Bourne shell, its default behaviour does not entirely correspond to
those shells. General shell syntax is introduced in Chapter 6 [Shell Grammar]|, page 9.

One commonly encountered difference is that variables substituted onto the command line are
not split into words. See the description of the shell option SH_WORD_SPLIT in Section 14.3
[Parameter Expansion|, page 47. In zsh, you can either explicitly request the splitting (e.g.
${=foo}) or use an array when you want a variable to expand to more than one word. See
Section 15.2 [Array Parameters], page 77.

3.6 Programming

The most convenient way of adding enhancements to the shell is typically by writing a shell
function and arranging for it to be autoloaded. Functions are described in Chapter 9 [Functions],
page 22. Users changing from the C shell and its relatives should notice that aliases are less
used in zsh as they don’t perform argument substitution, only simple text replacement.

A few general functions, other than those for the line editor described above, are provided with
the shell and are described in Chapter 26 [User Contributions], page 378. Features include:

promptinit
a prompt theme system for changing prompts easily, see Section 26.6 [Prompt
Themes], page 405,

zsh-mime-setup
a MIME-handling system which dispatches commands according to the suffix of a
file as done by graphical file managers

zcalc a calculator
zargs a version of xargs that makes the find command redundant
zmv a command for renaming files by means of shell patterns.

4 Invocation

4.1 Invocation

The following flags are interpreted by the shell when invoked to determine where the shell will
read commands from:

-c Take the first argument as a command to execute, rather than reading commands
from a script or standard input. If any further arguments are given, the first one is
assigned to $0, rather than being used as a positional parameter.

-i Force shell to be interactive. It is still possible to specify a script to execute.

-s Force shell to read commands from the standard input. If the -s flag is not present
and an argument is given, the first argument is taken to be the pathname of a script
to execute.

Chapter 4: Invocation 6

If there are any remaining arguments after option processing, and neither of the options -c or -s
was supplied, the first argument is taken as the file name of a script containing shell commands
to be executed. If the option PATH_SCRIPT is set, and the file name does not contain a directory
path (i.e. there is no ‘/’ in the name), first the current directory and then the command path
given by the variable PATH are searched for the script. If the option is not set or the file name
contains a ‘/’ it is used directly.

After the first one or two arguments have been appropriated as described above, the remaining
arguments are assigned to the positional parameters.

For further options, which are common to invocation and the set builtin, see Chapter 16 [Op-
tions], page 97.

The long option ‘--emulate’ followed (in a separate word) by an emulation mode may be passed
to the shell. The emulation modes are those described for the emulate builtin, see Chapter 17
[Shell Builtin Commands|, page 124. The ‘--emulate’ option must precede any other options
(which might otherwise be overridden), but following options are honoured, so may be used
to modify the requested emulation mode. Note that certain extra steps are taken to ensure a
smooth emulation when this option is used compared with the emulate command within the
shell: for example, variables that conflict with POSIX usage such as path are not defined within
the shell.

Options may be specified by name using the —-o option. -o acts like a single-letter option, but
takes a following string as the option name. For example,

zsh -x -o shwordsplit scr

runs the script scr, setting the XTRACE option by the corresponding letter ‘-x’ and the
SH_WORD_SPLIT option by name. Options may be turned off by name by using +o instead of -o.
-o can be stacked up with preceding single-letter options, so for example ‘-xo shwordsplit’ or
‘-xoshwordsplit’ is equivalent to ‘-x -o shwordsplit’.

¢

Options may also be specified by name in GNU long option style, ‘--option-name’. When this
is done, ‘=’ characters in the option name are permitted: they are translated into ‘_’, and thus
ignored. So, for example, ‘zsh --sh-word-split’ invokes zsh with the SH_WORD_SPLIT option
turned on. Like other option syntaxes, options can be turned off by replacing the initial ‘-’
with a ‘+’; thus ‘+-sh-word-split’ is equivalent to ‘--no-sh-word-split’. Unlike other option
syntaxes, GNU-style long options cannot be stacked with any other options, so for example
‘-x-shwordsplit’ is an error, rather than being treated like ‘-x --shwordsplit’.

4

The special GNU-style option ‘--version’ is handled; it sends to standard output the shell’s
version information, then exits successfully. ‘~-help’ is also handled; it sends to standard output
a list of options that can be used when invoking the shell, then exits successfully.

Option processing may be finished, allowing following arguments that start with ‘=’ or ‘+’ to be
treated as normal arguments, in two ways. Firstly, a lone ‘=’ (or ‘+’) as an argument by itself
ends option processing. Secondly, a special option ‘==’ (or ‘+-’), which may be specified on its
own (which is the standard POSIX usage) or may be stacked with preceding options (so ‘-x-’ is
equivalent to ‘-x --"). Options are not permitted to be stacked after ‘--’ (so ‘-x-f’ is an error),
but note the GNU-style option form discussed above, where ‘~-shwordsplit’ is permitted and
does not end option processing.

Except when the sh/ksh emulation single-letter options are in effect, the option ‘-b’ (or ‘+b’)
ends option processing. ‘-b’ is like ‘-=’, except that further single-letter options can be stacked
after the ‘b’ and will take effect as normal.

4.2 Compatibility

Zsh tries to emulate sh or ksh when it is invoked as sh or ksh respectively; more precisely, it
looks at the first letter of the name by which it was invoked, excluding any initial ‘r’ (assumed

Chapter 4: Invocation 7

to stand for ‘restricted’), and if that is ‘b’, ‘s’ or ‘k’ it will emulate sh or ksh. Furthermore, if
invoked as su (which happens on certain systems when the shell is executed by the su command),
the shell will try to find an alternative name from the SHELL environment variable and perform
emulation based on that.

In sh and ksh compatibility modes the following parameters are not special and not initialized
by the shell: ARGC, argv, cdpath, fignore, fpath, HISTCHARS, mailpath, MANPATH, manpath,
path, prompt, PROMPT, PROMPT2, PROMPT3, PROMPT4, psvar, status.

The usual zsh startup/shutdown scripts are not executed. Login shells source /etc/profile
followed by $HOME/.profile. If the ENV environment variable is set on invocation, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expansion, command
substitution, and arithmetic expansion before being interpreted as a pathname. Note that the
PRIVILEGED option also affects the execution of startup files.

The following options are set if the shell is invoked as sh or ksh: NO_BAD_PATTERN,
NO_BANG_HIST, NO_BG_NICE, NO_EQUALS, NO_FUNCTION_ARGZERQO, GLOB_SUBST,
NO_GLOBAL_EXPORT, NO_HUP, INTERACTIVE_COMMENTS, KSH_ARRAYS, NO_MULTIOS,
NO_NOMATCH, NO_NOTIFY, POSIX_BUILTINS, NO_PROMPT_PERCENT, RM_STAR_SILENT,
SH_FILE_EXPANSION, SH_GLOB, SH_OPTION_LETTERS, SH_WORD_SPLIT. Additionally
the BSD_ECHO and IGNORE_BRACES options are set if zsh is invoked as sh. Also, the
KSH_OPTION_PRINT, LOCAL_OPTIONS, PROMPT_BANG, PROMPT_SUBST and SINGLE_LINE_ZLE
options are set if zsh is invoked as ksh.

Please note that, whilst reasonable efforts are taken to address incompatibilities when they arise,
zsh does not guarantee complete emulation of other shells, nor POSIX compliance. For more
information on the differences between zsh and other shells, please refer to chapter 2 of the shell
FAQ, https://www.zsh.org/FAQ/.

4.3 Restricted Shell

When the basename of the command used to invoke zsh starts with the letter ‘r’ or the ‘-r’
command line option is supplied at invocation, the shell becomes restricted. Emulation mode is
determined after stripping the letter ‘r’ from the invocation name. The following are disabled
in restricted mode:

e changing directories with the cd builtin

e changing or unsetting the EGID, EUID, GID, HISTFILE, HISTSIZE, IFS,
LD_AOUT_LIBRARY_PATH, LD_AQUT_PRELOAD, LD_LIBRARY_PATH, LD_PRELOAD,
MODULE_PATH, module_path, PATH, path, SHELL, UID and USERNAME parameters

e specifying command names containing /
e specifying command pathnames using hash
e redirecting output to files
e using the exec builtin command to replace the shell with another command
e using jobs -Z to overwrite the shell process’ argument and environment space
e using the ARGVO parameter to override argv[0] for external commands
e turning off restricted mode with set +r or unsetopt RESTRICTED
These restrictions are enforced after processing the startup files. The startup files should set

up PATH to point to a directory of commands which can be safely invoked in the restricted
environment. They may also add further restrictions by disabling selected builtins.

Restricted mode can also be activated any time by setting the RESTRICTED option. This imme-
diately enables all the restrictions described above even if the shell still has not processed all
startup files.

https://www.zsh.org/FAQ/

Chapter 5: Files 8

A shell Restricted Mode is an outdated way to restrict what users may do: modern systems have
better, safer and more reliable ways to confine user actions, such as chroot jails, containers and
zones.

A restricted shell is very difficult to implement safely. The feature may be removed in a future
version of zsh.

It is important to realise that the restrictions only apply to the shell, not to the commands it
runs (except for some shell builtins). While a restricted shell can only run the restricted list
of commands accessible via the predefined ‘PATH’ variable, it does not prevent those commands
from running any other command.

As an example, if ‘env’ is among the list of allowed commands, then it allows the user to run
any command as ‘env’ is not a shell builtin command and can run arbitrary executables.

So when implementing a restricted shell framework it is important to be fully aware of what
actions each of the allowed commands or features (which may be regarded as modules) can
perform.

Many commands can have their behaviour affected by environment variables. Except for the
few listed above, zsh does not restrict the setting of environment variables.

If a ‘perl’, ‘python’, ‘bash’, or other general purpose interpreted script it treated as a restricted
command, the user can work around the restriction by setting specially crafted ‘PERLSLIB’,
‘PYTHONPATH’, ‘BASHENV’ (etc.) environment variables. On GNU systems, any command can be
made to run arbitrary code when performing character set conversion (including zsh itself) by
setting a ‘GCONV_PATH’ environment variable. Those are only a few examples.

Bear in mind that, contrary to some other shells, ‘readonly’ is not a security feature in zsh as
it can be undone and so cannot be used to mitigate the above.

A restricted shell only works if the allowed commands are few and carefully written so as not to
grant more access to users than intended. It is also important to restrict what zsh module the
user may load as some of them, such as ‘zsh/system’, ‘zsh/mapfile’ and ‘zsh/files’, allow
bypassing most of the restrictions.

5 Files

5.1 Startup/Shutdown Files

Commands are first read from /etc/zsh/zshenv; this cannot be overridden. Subsequent be-
haviour is modified by the RCS and GLOBAL_RCS options; the former affects all startup files, while
the second only affects global startup files (those shown here with an path starting with a /).
If one of the options is unset at any point, any subsequent startup file(s) of the corresponding
type will not be read. It is also possible for a file in $ZDOTDIR to re-enable GLOBAL_RCS. Both
RCS and GLOBAL_RCS are set by default.

Commands are then read from $ZDOTDIR/.zshenv. If the shell is a login shell, commands are
read from /etc/zsh/zprofile and then $ZDOTDIR/.zprofile. Then, if the shell is interactive,
commands are read from /etc/zsh/zshrc and then $ZDOTDIR/.zshrc. Finally, if the shell is a
login shell, /etc/zsh/zlogin and $ZDOTDIR/.zlogin are read.

When a login shell exits, the files $ZDOTDIR/.zlogout and then /etc/zsh/zlogout are read.
This happens with either an explicit exit via the exit or logout commands, or an implicit
exit by reading end-of-file from the terminal. However, if the shell terminates due to exec’ing
another process, the logout files are not read. These are also affected by the RCS and GLOBAL_RCS
options. Note also that the RCS option affects the saving of history files, i.e. if RCS is unset when
the shell exits, no history file will be saved.

Chapter 6: Shell Grammar 9

If ZDOTDIR is unset, HOME is used instead. Files listed above as being in /etc may be in another
directory, depending on the installation.

As /etc/zsh/zshenv is run for all instances of zsh, it is important that it be kept as small as
possible. In particular, it is a good idea to put code that does not need to be run for every single
shell behind a test of the form ‘4f [[-o rcs 1]1; then ...’ so that it will not be executed
when zsh is invoked with the ‘-f’ option.

5.2 Files

$ZDOTDIR/.zshenv
$ZDOTDIR/.zprofile

$ZDOTDIR/ .zshrc

$ZDOTDIR/.zlogin
$ZDOTDIR/.zlogout

${TMPPREFIX}* (default is /tmp/zsh*)
/etc/zsh/zshenv
/etc/zsh/zprofile

/etc/zsh/zshrc

/etc/zsh/zlogin

/etc/zsh/zlogout (installation-specific - /etc is the default)

Any of these files may be pre-compiled with the zcompile builtin command (Chapter 17 [Shell
Builtin Commands|, page 124). If a compiled file exists (named for the original file plus the
.zwc extension) and it is newer than the original file, the compiled file will be used instead.

6 Shell Grammar

6.1 Simple Commands & Pipelines

A simple command is a sequence of optional parameter assignments followed by blank-separated
words, with optional redirections interspersed. For a description of assignment, see the beginning
of Chapter 15 [Parameters|, page 77.

The first word is the command to be executed, and the remaining words, if any, are arguments to
the command. If a command name is given, the parameter assignments modify the environment
of the command when it is executed. The value of a simple command is its exit status, or 128
plus the signal number if terminated by a signal. For example,

echo foo
is a simple command with arguments.

A pipeline is either a simple command, or a sequence of two or more simple commands where
each command is separated from the next by ‘|’ or ‘|&. Where commands are separated by |’,
the standard output of the first command is connected to the standard input of the next. ‘|&’
is shorthand for ‘2>&1 |’, which connects both the standard output and the standard error of
the command to the standard input of the next. The value of a pipeline is the value of the last
command, unless the pipeline is preceded by ‘!’ in which case the value is the logical inverse of
the value of the last command. For example,

echo foo | sed ’s/foo/bar/’

Chapter 6: Shell Grammar 10

is a pipeline, where the output (‘foo’ plus a newline) of the first command will be passed to the
input of the second.

If a pipeline is preceded by ‘coproc’, it is executed as a coprocess; a two-way pipe is established
between it and the parent shell. The shell can read from or write to the coprocess by means of
the ‘>&p’ and ‘<&p’ redirection operators or with ‘print -p’ and ‘read -p’. A pipeline cannot
be preceded by both ‘coproc’ and ‘!’. If job control is active, the coprocess can be treated in
other than input and output as an ordinary background job.
A sublist is either a single pipeline, or a sequence of two or more pipelines separated by ‘&&’
or ‘||’. If two pipelines are separated by ‘&&’, the second pipeline is executed only if the first
succeeds (returns a zero status). If two pipelines are separated by ‘| |’, the second is executed
only if the first fails (returns a nonzero status). Both operators have equal precedence and are
left associative. The value of the sublist is the value of the last pipeline executed. For example,
dmesg | grep panic && print yes
is a sublist consisting of two pipelines, the second just a simple command which will be executed
if and only if the grep command returns a zero status. If it does not, the value of the sublist is
that return status, else it is the status returned by the print (almost certainly zero).
A list is a sequence of zero or more sublists, in which each sublist is terminated by ‘;’, ‘&’, ‘&|’,
‘&'’ or a newline. This terminator may optionally be omitted from the last sublist in the list
when the list appears as a complex command inside ‘(...)" or ‘{...}’. When a sublist is terminated
by ¢;’ or newline, the shell waits for it to finish before executing the next sublist. If a sublist
is terminated by a ‘&’, ‘&|’, or ‘&!’, the shell executes the last pipeline in it in the background,
and does not wait for it to finish (note the difference from other shells which execute the whole
sublist in the background). A backgrounded pipeline returns a status of zero.

More generally, a list can be seen as a set of any shell commands whatsoever, including the
complex commands below; this is implied wherever the word ‘list’ appears in later descriptions.
For example, the commands in a shell function form a special sort of list.

6.2 Precommand Modifiers

A simple command may be preceded by a precommand modifier, which will alter how the
command is interpreted. These modifiers are shell builtin commands with the exception of
nocorrect which is a reserved word.

- The command is executed with a ‘=’ prepended to its argv[0] string.

builtin The command word is taken to be the name of a builtin command, rather than a
shell function or external command.

command [-pvV |
The command word is taken to be the name of an external command, rather than
a shell function or builtin. If the POSIX_BUILTINS option is set, builtins will also be
executed but certain special properties of them are suppressed. The -p flag causes
a default path to be searched instead of that in $path. With the -v flag, command
is similar to whence and with -V, it is equivalent to whence -v.

exec [-cl] [-a argv0]
The following command together with any arguments is run in place of the current
process, rather than as a sub-process. The shell does not fork and is replaced. The
shell does not invoke TRAPEXIT, nor does it source zlogout files. The options are
provided for compatibility with other shells.

The -c option clears the environment.

The -1 option is equivalent to the - precommand modifier, to treat the replacement
command as a login shell; the command is executed with a - prepended to its
argv [0] string. This flag has no effect if used together with the -a option.

Chapter 6: Shell Grammar 11

The -a option is used to specify explicitly the argv[0] string (the name of the
command as seen by the process itself) to be used by the replacement command
and is directly equivalent to setting a value for the ARGVO environment variable.

nocorrect
Spelling correction is not done on any of the words. This must appear before any
other precommand modifier, as it is interpreted immediately, before any parsing is
done. It has no effect in non-interactive shells.

noglob Filename generation (globbing) is not performed on any of the words.

6.3 Complex Commands
A complexr command in zsh is one of the following:

if list then list [elif list then list | ... [else list | fi
The if list is executed, and if it returns a zero exit status, the then list is executed.
Otherwise, the elif list is executed and if its status is zero, the then list is executed.
If each elif list returns nonzero status, the else list is executed.

for name ... [in word ... | term do list done
Expand the list of words, and set the parameter name to each of them in turn,
executing list each time. If the ‘in word’ is omitted, use the positional parameters
instead of the words.

The term consists of one or more newline or ; which terminate the words, and are
optional when the ‘in word’ is omitted.

More than one parameter name can appear before the list of words. If N names
are given, then on each execution of the loop the next N words are assigned to
the corresponding parameters. If there are more names than remaining words, the
remaining parameters are each set to the empty string. Execution of the loop ends
when there is no remaining word to assign to the first name. It is only possible for
in to appear as the first name in the list, else it will be treated as marking the end
of the list.

for (([exprl] ; [expr2] ; [expr3])) do list done
The arithmetic expression exprl is evaluated first (see Chapter 11 [Arithmetic Eval-
uation], page 29). The arithmetic expression expr2 is repeatedly evaluated until it
evaluates to zero and when non-zero, list is executed and the arithmetic expression
exprd evaluated. If any expression is omitted, then it behaves as if it evaluated to
1.

while list do list done
Execute the do list as long as the while list returns a zero exit status.

until list do list done
Execute the do list as long as until list returns a nonzero exit status.

repeat word do list done
word is expanded and treated as an arithmetic expression, which must evaluate to
a number n. list is then executed n times.

The repeat syntax is disabled by default when the shell starts in a mode emulating
another shell. It can be enabled with the command ‘enable -r repeat’

case word in [[(] pattern | | pattern | ...) list (;;1;&l;1)] ... esac
Execute the list associated with the first pattern that matches word, if any. The form
of the patterns is the same as that used for filename generation. See Section 14.8
[Filename Generation], page 65.

Chapter 6: Shell Grammar 12

Note further that, unless the SH_GLOB option is set, the whole pattern with alterna-
tives is treated by the shell as equivalent to a group of patterns within parentheses,
although white space may appear about the parentheses and the vertical bar and
will be stripped from the pattern at those points. White space may appear else-
where in the pattern; this is not stripped. If the SH_GLOB option is set, so that an
opening parenthesis can be unambiguously treated as part of the case syntax, the
expression is parsed into separate words and these are treated as strict alternatives
(as in other shells).

If the list that is executed is terminated with ;& rather than ;;, the following list
is also executed. The rule for the terminator of the following list ;;, ;& or ;| is
applied unless the esac is reached.

If the list that is executed is terminated with ;| the shell continues to scan the
patterns looking for the next match, executing the corresponding list, and applying
the rule for the corresponding terminator ;;, ;& or ;|. Note that word is not

re-expanded; all applicable patterns are tested with the same word.

select name [in word ... term | do list done

(Iist)

{ List }
{ try-list }

where term is one or more newline or ; to terminate the words. Print the set of
words, each preceded by a number. If the in word is omitted, use the positional
parameters. The PROMPT3 prompt is printed and a line is read from the line editor if
the shell is interactive and that is active, or else standard input. If this line consists
of the number of one of the listed words, then the parameter name is set to the
word corresponding to this number. If this line is empty, the selection list is printed
again. Otherwise, the value of the parameter name is set to null. The contents of
the line read from standard input is saved in the parameter REPLY. list is executed
for each selection until a break or end-of-file is encountered.

Execute Iist in a subshell. Traps set by the trap builtin are reset to their default
values while executing list; an exception is that ignored signals will continue to be
ignored if the option POSIXTRAPS is set.

Execute list.

always { always-list }

First execute try-list. Regardless of errors, or break or continue commands en-
countered within try-list, execute always-list. Execution then continues from the
result of the execution of try-list; in other words, any error, or break or continue
command is treated in the normal way, as if always-list were not present. The two
chunks of code are referred to as the ‘try block’ and the ‘always block’.

Optional newlines or semicolons may appear after the always; note, however, that
they may not appear between the preceding closing brace and the always.

An ‘error’ in this context is a condition such as a syntax error which causes the shell
to abort execution of the current function, script, or list. Syntax errors encountered
while the shell is parsing the code do not cause the always-list to be executed. For
example, an erroneously constructed if block in try-list would cause the shell to
abort during parsing, so that always-list would not be executed, while an erroneous
substitution such as ${*foo*} would cause a run-time error, after which always-list
would be executed.

An error condition can be tested and reset with the special integer variable
TRY_BLOCK_ERROR. Outside an always-list the value is irrelevant, but it is initialised
to -1. Inside always-list, the value is 1 if an error occurred in the try-list, else 0. If
TRY_BLOCK_ERROR is set to 0 during the always-list, the error condition caused by
the try-list is reset, and shell execution continues normally after the end of always-

Chapter 6:

Shell Grammar 13

list. Altering the value during the try-list is not useful (unless this forms part of an
enclosing always block).

Regardless of TRY_BLOCK_ERROR, after the end of always-list the normal shell status
$7 is the value returned from try-list. This will be non-zero if there was an error,
even if TRY_BLOCK_ERROR was set to zero.

The following executes the given code, ignoring any errors it causes. This is an
alternative to the usual convention of protecting code by executing it in a subshell.

{
code which may cause an error
} always {
This code is executed regardless of the error.
((TRY_BLOCK_ERROR = 0))
b

The error condition has been reset.

When a try block occurs outside of any function, a return or a exit encountered
in try-list does not cause the execution of always-list. Instead, the shell exits im-
mediately after any EXIT trap has been executed. Otherwise, a return command
encountered in try-list will cause the execution of always-list, just like break and
continue.

function [-T | word ... [()] [term | { list }

word ... ()
word ... ()

[term | { Iist }

[term | command

where term is one or more newline or ;. Define a function which is referenced by
any one of word. Normally, only one word is provided; multiple words are usually
only useful for setting traps. The body of the function is the list between the { and
}. See Chapter 9 [Functions], page 22.

The options of function have the following meanings:

-T Enable tracing for this function, as though with functions -T. See the
documentation of the —-f option to the typeset builtin, in Chapter 17
[Shell Builtin Commands|, page 124.

If the option SH_GLOB is set for compatibility with other shells, then whitespace may
appear between the left and right parentheses when there is a single word; otherwise,
the parentheses will be treated as forming a globbing pattern in that case.

In any of the forms above, a redirection may appear outside the function body, for
example

func() { ... F 2>&1

The redirection is stored with the function and applied whenever the function is
executed. Any variables in the redirection are expanded at the point the function
is executed, but outside the function scope.

time [pipeline |

[[exp 1]

The pipeline is executed, and timing statistics are reported on the standard error in
the form specified by the TIMEFMT parameter. If pipeline is omitted, print statistics
about the shell process and its children.

Evaluates the conditional expression exp and return a zero exit status if it is true.
See Chapter 12 [Conditional Expressions], page 32, for a description of exp.

Chapter 6: Shell Grammar 14

6.4 Alternate Forms For Complex Commands

Many of zsh’s complex commands have alternate forms. These are non-standard and are likely
not to be obvious even to seasoned shell programmers; they should not be used anywhere that
portability of shell code is a concern.

The short versions below only work if sublist is of the form ‘{ list }’ or if the SHORT_LOOPS
option is set. For the if, while and until commands, in both these cases the test part of the
loop must also be suitably delimited, such as by ‘[[... 11’ or ‘((...))’, else the end of the test
will not be recognized. For the for, repeat, case and select commands no such special form
for the arguments is necessary, but the other condition (the special form of sublist or use of the
SHORT_LOOPS option) still applies. The SHORT_REPEAT option is available to enable the short
version only for the repeat command.

if list { list } [elif list { list }] ... [else { list } |
An alternate form of if. The rules mean that
if [[-o ignorebraces 1] {
print yes
}
works, but
if true { # Does not work!
print yes
}

does not, since the test is not suitably delimited.

if list sublist
A short form of the alternate if. The same limitations on the form of list apply as
for the previous form.

for name ... (word ...) sublist
A short form of for.

for name ... [in word ... | term sublist
where term is at least one newline or ;. Another short form of for.

for (([exprl] ; [expr2] ; [expr3])) sublist
A short form of the arithmetic for command.

foreach name ... (word ...) list end
Another form of for.

while list { list }
An alternative form of while. Note the limitations on the form of list mentioned
above.

until list { list }
An alternative form of until. Note the limitations on the form of Iist mentioned
above.

repeat word sublist
This is a short form of repeat.

case word { [[(] pattern [| pattern | ...) list (;;1;&l;1)] ... }
An alternative form of case.

select name | in word ... term | sublist
where term is at least one newline or ;. A short form of select.

function word ... [() | [term | sublist
This is a short form of function.

Chapter 6: Shell Grammar 15

6.5 Reserved Words
The following words are recognized as reserved words when used as the first word of a command
unless quoted or disabled using disable -r:

do done esac then elif else fi for case if while function repeat time until
select coproc nocorrect foreach end ! [[{ } declare export float integer local
readonly typeset

Additionally, ‘}’ is recognized in any position if neither the IGNORE_BRACES option nor the
IGNORE_CLOSE_BRACES option is set.

6.6 Errors

Certain errors are treated as fatal by the shell: in an interactive shell, they cause control to
return to the command line, and in a non-interactive shell they cause the shell to be aborted.
In older versions of zsh, a non-interactive shell running a script would not abort completely, but
would resume execution at the next command to be read from the script, skipping the remainder
of any functions or shell constructs such as loops or conditions; this somewhat illogical behaviour
can be recovered by setting the option CONTINUE_ON_ERROR.

Fatal errors found in non-interactive shells include:
e Failure to parse shell options passed when invoking the shell
e Failure to change options with the set builtin
e Parse errors of all sorts, including failures to parse mathematical expressions

e Failures to set or modify variable behaviour with typeset, local, declare, export,
integer, float

e Execution of incorrectly positioned loop control structures (continue, break)
e Attempts to use regular expression with no regular expression module available
e Disallowed operations when the RESTRICTED options is set

e Failure to create a pipe needed for a pipeline

e Failure to create a multio

e Failure to autoload a module needed for a declared shell feature

e Errors creating command or process substitutions

e Syntax errors in glob qualifiers

e File generation errors where not caught by the option BAD_PATTERN

e All bad patterns used for matching within case statements

e File generation failures where not caused by NO_MATCH or similar options

e All file generation errors where the pattern was used to create a multio

e Memory errors where detected by the shell

e Invalid subscripts to shell variables

e Attempts to assign read-only variables

e Logical errors with variables such as assignment to the wrong type

e Use of invalid variable names

e FErrors in variable substitution syntax

e Failure to convert characters in $’...° expressions

If the POSIX_BUILTINS option is set, more errors associated with shell builtin commands are
treated as fatal, as specified by the POSIX standard.

Chapter 6: Shell Grammar 16

6.7 Comments

In non-interactive shells, or in interactive shells with the INTERACTIVE_COMMENTS option set,
a word beginning with the third character of the histchars parameter (‘4 by default) causes
that word and all the following characters up to a newline to be ignored.

6.8 Aliasing

Every eligible word in the shell input is checked to see if there is an alias defined for it. If so, it
is replaced by the text of the alias if it is in command position (if it could be the first word of a
simple command), or if the alias is global. If the replacement text ends with a space, the next
word in the shell input is always eligible for purposes of alias expansion.

It is an error for the function name, word, in the sh-compatible function definition syntax ‘word
() ... to be a word that resulted from alias expansion, unless the ALIAS_FUNC_DEF option is
set.

An alias is defined using the alias builtin; global aliases may be defined using the -g option to
that builtin.

A word is defined as:
e Any plain string or glob pattern

e Any quoted string, using any quoting method (note that the quotes must be part of the
alias definition for this to be eligible)

e Any parameter reference or command substitution
e Any series of the foregoing, concatenated without whitespace or other tokens between them
e Any reserved word (case, do, else, etc.)

o With global aliasing, any command separator, any redirection operator, and ‘(’ or ‘)’ when
not part of a glob pattern

Alias expansion is done on the shell input before any other expansion except history expansion.
Therefore, if an alias is defined for the word foo, alias expansion may be avoided by quoting
part of the word, e.g. \foo. Any form of quoting works, although there is nothing to prevent
an alias being defined for the quoted form such as \foo as well.

In particular, note that quoting must be used when using unalias to remove global aliases:

% alias -g foo=bar

% unalias foo

unalias: no such hash table element: bar

% unalias \foo

b
When POSIX_ALTASES is set, only plain unquoted strings are eligible for aliasing. The alias
builtin does not reject ineligible aliases, but they are not expanded.

For use with completion, which would remove an initial backslash followed by a character that
isn’t special, it may be more convenient to quote the word by starting with a single quote, i.e.
’foo; completion will automatically add the trailing single quote.

6.8.1 Alias difficulties

Although aliases can be used in ways that bend normal shell syntax, not every string of non-
white-space characters can be used as an alias.

Any set of characters not listed as a word above is not a word, hence no attempt is made to
expand it as an alias, no matter how it is defined (i.e. via the builtin or the special parameter
aliases described in Section 22.20 [The zsh/parameter Module|, page 315). However, as noted

Chapter 7: Redirection 17

in the case of POSIX_ALIASES above, the shell does not attempt to deduce whether the string
corresponds to a word at the time the alias is created.

For example, an expression containing an = at the start of a command line is an assignment and
cannot be expanded as an alias; a lone = is not an assignment but can only be set as an alias
using the parameter, as otherwise the = is taken part of the syntax of the builtin command.

It is not presently possible to alias the ‘((’ token that introduces arithmetic expressions, because
until a full statement has been parsed, it cannot be distinguished from two consecutive ‘ (’ tokens
introducing nested subshells. Also, if a separator such as && is aliased, \&& turns into the two
tokens \& and &, each of which may have been aliased separately. Similarly for \<<; \>|, etc.

There is a commonly encountered problem with aliases illustrated by the following code:
alias echobar=’echo bar’; echobar

This prints a message that the command echobar could not be found. This happens because
aliases are expanded when the code is read in; the entire line is read in one go, so that when
echobar is executed it is too late to expand the newly defined alias. This is often a problem in
shell scripts, functions, and code executed with ‘source’ or ‘.’. Consequently, use of functions
rather than aliases is recommended in non-interactive code.

6.9 Quoting

A character may be quoted (that is, made to stand for itself) by preceding it with a ‘\’. ‘\’
followed by a newline is ignored.

A string enclosed between ‘$°’ and ‘*’ is processed the same way as the string arguments of the
print builtin, and the resulting string is considered to be entirely quoted. A literal ‘>’ character
can be included in the string by using the ‘\’’ escape.
All characters enclosed between a pair of single quotes (’’) that is not preceded by a ‘$’ are
quoted. A single quote cannot appear within single quotes unless the option RC_QUOTES is set,
in which case a pair of single quotes are turned into a single quote. For example,

print)2)
outputs nothing apart from a newline if RC_QUOTES is not set, but one single quote if it is set.

Inside double quotes (""), parameter and command substitution occur, and ‘\” quotes the char-
acters ‘\’, <7, " ‘$’ and the first character of $histchars (default ‘!’).

7 Redirection

If a command is followed by & and job control is not active, then the default standard input
for the command is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by input/output
specifications.

The following may appear anywhere in a simple command or may precede or follow a complex
command. Expansion occurs before word or digit is used except as noted below. If the result
of substitution on word produces more than one filename, redirection occurs for each separate
filename in turn.

< word Open file word for reading as standard input. It is an error to open a file in this
fashion if it does not exist.

<> word Open file word for reading and writing as standard input. If the file does not exist
then it is created.

> word Open file word for writing as standard output. If the file does not exist then it is
created. If the file exists, and the CLOBBER option is unset, this causes an error;
otherwise, it is truncated to zero length.

Chapter 7: Redirection 18

>| word
> word

>> word

>>| word
>>1 word

<<[-] word

<<< word

<& number
>& number

<& -
>& -

<& p
>& p

>& word
&> word

>&| word
>&! word
&> | word
&>! word

Same as >, except that the file is truncated to zero length if it exists, regardless of
CLOBBER.

Open file word for writing in append mode as standard output. If the file does not
exist, and the CLOBBER and APPEND_CREATE options are both unset, this causes an
error; otherwise, the file is created.

Same as >>, except that the file is created if it does not exist, regardless of CLOBBER
and APPEND_CREATE.

The shell input is read up to a line that is the same as word, or to an end-of-file.
No parameter expansion, command substitution or filename generation is performed
on word. The resulting document, called a here-document, becomes the standard
input.

If any character of word is quoted with single or double quotes or a ‘\’, no inter-
pretation is placed upon the characters of the document. Otherwise, parameter and
command substitution occurs, ‘\’ followed by a newline is removed, and ‘\’ must be
used to quote the characters ‘\’, ‘$’, *“” and the first character of word.

Note that word itself does not undergo shell expansion. Backquotes in word do
not have their usual effect; instead they behave similarly to double quotes, except
that the backquotes themselves are passed through unchanged. (This information is
given for completeness and it is not recommended that backquotes be used.) Quotes
in the form $’...° have their standard effect of expanding backslashed references to
special characters.

If <<~ is used, then all leading tabs are stripped from word and from the document.
Perform shell expansion on word and pass the result to standard input. This is
known as a here-string. Compare the use of word in here-documents above, where

word does not undergo shell expansion. The result will have a trailing newline after
it.

The standard input/output is duplicated from file descriptor number (see dup2(2)).
Close the standard input/output.
The input/output from/to the coprocess is moved to the standard input/output.

(Except where ‘>& word’ matches one of the above syntaxes; ‘&>’ can always be
used to avoid this ambiguity.) Redirects both standard output and standard error
(file descriptor 2) in the manner of > word’. Note that this does not have the same
effect as ‘> word 2>&1’ in the presence of multios (see the section below).

Redirects both standard output and standard error (file descriptor 2) in the manner
of >| word’.

Chapter 7: Redirection 19

>>& word
&>> word Redirects both standard output and standard error (file descriptor 2) in the manner
of *>> word’.

>>&| word

>>&! word

&>>| word

&>>! word Redirects both standard output and standard error (file descriptor 2) in the manner
of >>| word’.

If one of the above is preceded by a digit, then the file descriptor referred to is that specified by
the digit instead of the default 0 or 1. The order in which redirections are specified is significant.
The shell evaluates each redirection in terms of the (file descriptor, file) association at the time
of evaluation. For example:

. 1>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file
descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname.

The ‘& command separator described in Section 6.1 [Simple Commands & Pipelines|, page 9,
is a shorthand for ‘2>&1 |’.

The various forms of process substitution, ‘<(list)’, and ‘=(list)’ for input and ‘>(list)’ for
output, are often used together with redirection. For example, if word in an output redirection
is of the form ‘>(list)’ then the output is piped to the command represented by list. See
Section 14.2 [Process Substitution|, page 45.

7.1 Opening file descriptors using parameters

When the shell is parsing arguments to a command, and the shell option IGNORE_BRACES is
not set, a different form of redirection is allowed: instead of a digit before the operator there
is a valid shell identifier enclosed in braces. The shell will open a new file descriptor that is
guaranteed to be at least 10 and set the parameter named by the identifier to the file descriptor
opened. No whitespace is allowed between the closing brace and the redirection character. For
example:

.. {myfd}>&1

This opens a new file descriptor that is a duplicate of file descriptor 1 and sets the parameter
myfd to the number of the file descriptor, which will be at least 10. The new file descriptor
can be written to using the syntax >&$myfd. The file descriptor remains open in subshells and
forked external executables.

The syntax {varid}>&-, for example {myfd}>&-, may be used to close a file descriptor opened in
this fashion. Note that the parameter given by varid must previously be set to a file descriptor
in this case.

It is an error to open or close a file descriptor in this fashion when the parameter is readonly.
However, it is not an error to read or write a file descriptor using <&$param or >&$param if
param is readonly.

If the option CLOBBER is unset, it is an error to open a file descriptor using a parameter that
is already set to an open file descriptor previously allocated by this mechanism. Unsetting the
parameter before using it for allocating a file descriptor avoids the error.

Note that this mechanism merely allocates or closes a file descriptor; it does not perform any
redirections from or to it. It is usually convenient to allocate a file descriptor prior to use as an

Chapter 7: Redirection 20

argument to exec. The syntax does not in any case work when used around complex commands
such as parenthesised subshells or loops, where the opening brace is interpreted as part of a
command list to be executed in the current shell.
The following shows a typical sequence of allocation, use, and closing of a file descriptor:

integer myfd

exec {myfd}>~/logs/mylogfile.txt

print This is a log message. >&$myfd

exec {myfd}>&-
Note that the expansion of the variable in the expression >&$myfd occurs at the point the redi-
rection is opened. This is after the expansion of command arguments and after any redirections
to the left on the command line have been processed.

7.2 Multios

If the user tries to open a file descriptor for writing more than once, the shell opens the file
descriptor as a pipe to a process that copies its input to all the specified outputs, similar to tee,
provided the MULTIOS option is set, as it is by default. Thus:

date >foo >bar
writes the date to two files, named ‘foo’ and ‘bar’. Note that a pipe is an implicit redirection;
thus

date >foo | cat
writes the date to the file ‘foo’, and also pipes it to cat.
Note that the shell opens all the files to be used in the multio process immediately, not at the
point they are about to be written.

Note also that redirections are always expanded in order. This happens regardless of the setting
of the MULTIOS option, but with the option in effect there are additional consequences. For
example, the meaning of the expression >&1 will change after a previous redirection:

date >&1 >output
In the case above, the >&1 refers to the standard output at the start of the line; the result is
similar to the tee command. However, consider:

date >output >&1
As redirections are evaluated in order, when the >&1 is encountered the standard output is set

to the file output and another copy of the output is therefore sent to that file. This is unlikely
to be what is intended.

If the MULTIOS option is set, the word after a redirection operator is also subjected to filename
generation (globbing). Thus

D> %
will truncate all files in the current directory, assuming there’s at least one. (Without the
MULTIOS option, it would create an empty file called ‘*’.) Similarly, you can do

echo exit 0 >> *.sh
If the user tries to open a file descriptor for reading more than once, the shell opens the file
descriptor as a pipe to a process that copies all the specified inputs to its output in the order
specified, provided the MULTIOS option is set. It should be noted that each file is opened
immediately, not at the point where it is about to be read: this behaviour differs from cat, so
if strictly standard behaviour is needed, cat should be used instead.

Thus
sort <foo <fubar

or even

Chapter 7: Redirection 21

sort <f{oo,ubar}
is equivalent to ‘cat foo fubar | sort’.

Expansion of the redirection argument occurs at the point the redirection is opened, at the point
described above for the expansion of the variable in >&$myfd.

Note that a pipe is an implicit redirection; thus
cat bar | sort <foo
is equivalent to ‘cat bar foo | sort’ (note the order of the inputs).

If the MULTIOS option is unset, each redirection replaces the previous redirection for that file
descriptor. However, all files redirected to are actually opened, so

echo Hello > bar > baz
when MULTIOS is unset will truncate ‘bar’, and write ‘Hello’ into ‘baz’.

There is a problem when an output multio is attached to an external program. A simple example
shows this:

cat file >filel >file2
cat filel file2

Here, it is possible that the second ‘cat’ will not display the full contents of filel and file2
(i.e. the original contents of file repeated twice).

The reason for this is that the multios are spawned after the cat process is forked from the parent
shell, so the parent shell does not wait for the multios to finish writing data. This means the
command as shown can exit before filel and file2 are completely written. As a workaround,
it is possible to run the cat process as part of a job in the current shell:

{ cat file } >file >file2

Here, the {...} job will pause to wait for both files to be written.

7.3 Redirections with no command

When a simple command consists of one or more redirection operators and zero or more param-
eter assignments, but no command name, zsh can behave in several ways.

If the parameter NULLCMD is not set or the option CSH_NULLCMD is set, an error is caused. This
is the csh behavior and CSH_NULLCMD is set by default when emulating csh.

If the option SH_NULLCMD is set, the builtin ‘:’ is inserted as a command with the given redirec-
tions. This is the default when emulating sh or ksh.

Otherwise, if the parameter NULLCMD is set, its value will be used as a command with the given
redirections. If both NULLCMD and READNULLCMD are set, then the value of the latter will be used
instead of that of the former when the redirection is an input. The default for NULLCMD is ‘cat’
and for READNULLCMD is ‘more’. Thus

< file

shows the contents of file on standard output, with paging if that is a terminal. NULLCMD and
READNULLCMD may refer to shell functions.

Chapter 9: Functions 22

8 Command Execution

If a command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, the function is invoked as described in Chapter 9 [Functions|, page 22.
If there exists a shell builtin by that name, the builtin is invoked.

Otherwise, the shell searches each element of $path for a directory containing an executable file
by that name.

If execution fails: an error message is printed, and one of the following values is returned.
127 The search was unsuccessful. The error message is ‘command not found: cmd’.

126 The executable file has insufficient permissions, is a directory or special file, or is
not a script and is in a format unrecognized by the operating system. The exact
conditions and error message are operating system-dependent; see execve(2).

If execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script. /bin/sh is spawned to execute it. If the program is a file beginning
with ‘#!’, the remainder of the first line specifies an interpreter for the program. The shell will
execute the specified interpreter on operating systems that do not handle this executable format
in the kernel.

If no external command is found but a function command_not_found_handler exists the shell
executes this function with all command line arguments. The return status of the function
becomes the status of the command. Note that the handler is executed in a subshell forked to
execute an external command, hence changes to directories, shell parameters, etc. have no effect
on the main shell.

9 Functions

Shell functions are defined with the function reserved word or the special syntax ‘funcname
()’. Shell functions are read in and stored internally. Alias names are resolved when the
function is read. Functions are executed like commands with the arguments passed as positional
parameters. (See Chapter 8 [Command Execution], page 22.)

Functions execute in the same process as the caller and share all files and present working
directory with the caller. A trap on EXIT set inside a function is executed after the function
completes in the environment of the caller.

The return builtin is used to return from function calls.

Function identifiers can be listed with the functions builtin. Functions can be undefined with
the unfunction builtin.

9.1 Autoloading Functions

A function can be marked as undefined using the autoload builtin (or ‘functions -u’ or ‘type-
set —-fu’). Such a function has no body. When the function is first executed, the shell searches
for its definition using the elements of the fpath variable. Thus to define functions for autoload-
ing, a typical sequence is:

fpath=("/myfuncs $fpath)

autoload myfuncl myfunc2 ...
The usual alias expansion during reading will be suppressed if the autoload builtin or its
equivalent is given the option -U. This is recommended for the use of functions supplied with
the zsh distribution. Note that for functions precompiled with the zcompile builtin command

Chapter 9: Functions 23

the flag -U must be provided when the .zwc file is created, as the corresponding information is
compiled into the latter.

For each element in fpath, the shell looks for three possible files, the newest of which is used to
load the definition for the function:

element . zwc
A file created with the zcompile builtin command, which is expected to contain the
definitions for all functions in the directory named element. The file is treated in
the same manner as a directory containing files for functions and is searched for the
definition of the function. If the definition is not found, the search for a definition
proceeds with the other two possibilities described below.

If element already includes a .zwc extension (i.e. the extension was explicitly
given by the user), element is searched for the definition of the function without
comparing its age to that of other files; in fact, there does not need to be any
directory named element without the suffix. Thus including an element such as
‘/usr/local/funcs.zwc’ in fpath will speed up the search for functions, with the
disadvantage that functions included must be explicitly recompiled by hand before
the shell notices any changes.

element/ function . zwc
A file created with zcompile, which is expected to contain the definition for function.
It may include other function definitions as well, but those are neither loaded nor
executed; a file found in this way is searched only for the definition of function.

element/ function
A file of zsh command text, taken to be the definition for function.

In summary, the order of searching is, first, in the parents of directories in fpath for the newer
of either a compiled directory or a directory in £path; second, if more than one of these contains
a definition for the function that is sought, the leftmost in the fpath is chosen; and third, within
a directory, the newer of either a compiled function or an ordinary function definition is used.

If the KSH_AUTOLOAD option is set, or the file contains only a simple definition of the function,
the file’s contents will be executed. This will normally define the function in question, but may
also perform initialization, which is executed in the context of the function execution, and may
therefore define local parameters. It is an error if the function is not defined by loading the file.

Otherwise, the function body (with no surrounding ‘funcname() {...}’) is taken to be the com-
plete contents of the file. This form allows the file to be used directly as an executable shell
script. If processing of the file results in the function being re-defined, the function itself is not
re-executed. To force the shell to perform initialization and then call the function defined, the
file should contain initialization code (which will be executed then discarded) in addition to a
complete function definition (which will be retained for subsequent calls to the function), and a
call to the shell function, including any arguments, at the end.

For example, suppose the autoload file func contains

func() { print This is func; }
print func is initialized

then ‘func; func’ with KSH_AUTOLOAD set will produce both messages on the first call, but only
the message ‘This is func’ on the second and subsequent calls. Without KSH_AUTOLOAD set,
it will produce the initialization message on the first call, and the other message on the second
and subsequent calls.

It is also possible to create a function that is not marked as autoloaded, but which loads its own
definition by searching fpath, by using ‘autoload -X’ within a shell function. For example, the
following are equivalent:

Chapter 9: Functions 24

myfunc() {
autoload -X
}

myfunc args...
and

unfunction myfunc # if myfunc was defined
autoload myfunc
myfunc args...

In fact, the functions command outputs ‘builtin autoload -X’ as the body of an autoloaded
function. This is done so that

eval "$(functions)"

produces a reasonable result. A true autoloaded function can be identified by the presence
of the comment ‘# undefined’ in the body, because all comments are discarded from defined
functions.

To load the definition of an autoloaded function myfunc without executing myfunc, use:

autoload +X myfunc

9.2 Anonymous Functions

If no name is given for a function, it is ‘anonymous’ and is handled specially. Either form of
function definition may be used: a ‘()’ with no preceding name, or a ‘function’ with an im-
mediately following open brace. The function is executed immediately at the point of definition
and is not stored for future use. The function name is set to ‘(anon)’.

Arguments to the function may be specified as words following the closing brace defining the
function, hence if there are none no arguments (other than $0) are set. This is a difference
from the way other functions are parsed: normal function definitions may be followed by certain
keywords such as ‘else’ or ‘fi’, which will be treated as arguments to anonymous functions, so
that a newline or semicolon is needed to force keyword interpretation.

Note also that the argument list of any enclosing script or function is hidden (as would be the
case for any other function called at this point).

Redirections may be applied to the anonymous function in the same manner as to a current-shell
structure enclosed in braces. The main use of anonymous functions is to provide a scope for
local variables. This is particularly convenient in start-up files as these do not provide their own
local variable scope.

For example,

variable=outside
function {
local variable=inside
print "I am $variable with arguments $*"
} this and that
print "I am $variable"

outputs the following:

I am inside with arguments this and that
I am outside

Note that function definitions with arguments that expand to nothing, for example ‘name=;
function $name { ... }’, are not treated as anonymous functions. Instead, they are treated as
normal function definitions where the definition is silently discarded.

Chapter 9: Functions 25

9.3 Special Functions

Certain functions, if defined, have special meaning to the shell.

9.3.1 Hook Functions

For the functions below, it is possible to define an array that has the same name as the function
with ‘_functions’ appended. Any element in such an array is taken as the name of a function
to execute; it is executed in the same context and with the same arguments and same initial
value of $7 as the basic function. For example, if $chpwd_functions is an array containing
the values ‘mychpwd’, ‘chpwd_save_dirstack’, then the shell attempts to execute the functions
‘chpwd’, ‘mychpwd’ and ‘chpwd_save_dirstack’, in that order. Any function that does not
exist is silently ignored. A function found by this mechanism is referred to elsewhere as a hook
function. An error in any function causes subsequent functions not to be run. Note further
that an error in a precmd hook causes an immediately following periodic function not to run
(though it may run at the next opportunity).

chpwd Executed whenever the current working directory is changed.

periodic If the parameter PERIOD is set, this function is executed every $PERIOD seconds,
just before a prompt. Note that if multiple functions are defined using the array
periodic_functions only one period is applied to the complete set of functions,
and the scheduled time is not reset if the list of functions is altered. Hence the set
of functions is always called together.

precmd Executed before each prompt. Note that precommand functions are not re-executed
simply because the command line is redrawn, as happens, for example, when a
notification about an exiting job is displayed.

preexec Executed just after a command has been read and is about to be executed. If the
history mechanism is active (regardless of whether the line was discarded from the
history buffer), the string that the user typed is passed as the first argument, oth-
erwise it is an empty string. The actual command that will be executed (including
expanded aliases) is passed in two different forms: the second argument is a single-
line, size-limited version of the command (with things like function bodies elided);
the third argument contains the full text that is being executed.

zshaddhistory
Executed when a history line has been read interactively, but before it is executed.
The sole argument is the complete history line (so that any terminating newline will
still be present).

If any of the hook functions returns status 1 (or any non-zero value other than 2,
though this is not guaranteed for future versions of the shell) the history line will not
be saved, although it lingers in the history until the next line is executed, allowing
you to reuse or edit it immediately.

If any of the hook functions returns status 2 the history line will be saved on the
internal history list, but not written to the history file. In case of a conflict, the first
non-zero status value is taken.

A hook function may call ‘fc -p ...” to switch the history context so that the history
is saved in a different file from that in the global HISTFILE parameter. This is
handled specially: the history context is automatically restored after the processing
of the history line is finished.

The following example function works with one of the options INC_APPEND_HISTORY
or SHARE_HISTORY set, in order that the line is written out immediately after the

Chapter 9: Functions 26

zshexit

history entry is added. It first adds the history line to the normal history with the
newline stripped, which is usually the correct behaviour. Then it switches the history
context so that the line will be written to a history file in the current directory.

zshaddhistory () {
print -sr -- ${1%%$’\n’}
fc -p .zsh_local_history
}

Executed at the point where the main shell is about to exit normally. This is not
called by exiting subshells, nor when the exec precommand modifier is used before
an external command. Also, unlike TRAPEXIT, it is not called when functions exit.

9.3.2 Trap Functions

The functions below are treated specially but do not have corresponding hook arrays.

TRAPNAL

TRAPDEBUG

TRAPEXIT

TRAPZERR

If defined and non-null, this function will be executed whenever the shell catches a
signal SIGNAL, where NAL is a signal name as specified for the kill builtin. The
signal number will be passed as the first parameter to the function.

If a function of this form is defined and null, the shell and processes spawned by it
will ignore SIGNAL.

The return status from the function is handled specially. If it is zero, the signal is
assumed to have been handled, and execution continues normally. Otherwise, the
shell will behave as interrupted except that the return status of the trap is retained.

Programs terminated by uncaught signals typically return the status 128 plus the
signal number. Hence the following causes the handler for SIGINT to print a message,
then mimic the usual effect of the signal.

TRAPINT() {
print "Caught SIGINT, aborting."
return $((128 + $1))

}

The functions TRAPZERR, TRAPDEBUG and TRAPEXIT are never executed inside other
traps.

If the option DEBUG_BEFORE_CMD is set (as it is by default), executed before each
command; otherwise executed after each command. See the description of the trap
builtin in Chapter 17 [Shell Builtin Commands], page 124, for details of additional
features provided in debug traps.

Executed when the shell exits, or when the current function exits if defined inside a
function. The value of $7 at the start of execution is the exit status of the shell or
the return status of the function exiting.

Executed whenever a command has a non-zero exit status. However, the function
is not executed if the command occurred in a sublist followed by ‘€&’ or ‘| |’; only
the final command in a sublist of this type causes the trap to be executed. The
function TRAPERR acts the same as TRAPZERR on systems where there is no SIGERR
(this is the usual case).

The functions beginning ‘TRAP’ may alternatively be defined with the trap builtin: this may be
preferable for some uses. Setting a trap with one form removes any trap of the other form for
the same signal; removing a trap in either form removes all traps for the same signal. The forms

TRAPNAL() {

Chapter 10: Jobs & Signals 27

code
}

("function traps’) and

trap °’
code
> NAL

(’list traps’) are equivalent in most ways, the exceptions being the following:

e Function traps have all the properties of normal functions, appearing in the list of functions
and being called with their own function context rather than the context where the trap
was triggered.

e The return status from function traps is special, whereas a return from a list trap causes
the surrounding context to return with the given status.

e Function traps are not reset within subshells, in accordance with zsh behaviour; list traps
are reset, in accordance with POSIX behaviour.

10 Jobs & Signals

10.1 Jobs

If the MONITOR option is set, an interactive shell associates a job with each pipeline. It keeps a
table of current jobs, printed by the jobs command, and assigns them small integer numbers.
When a job is started asynchronously with ‘&’, the shell prints a line to standard error which
looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had one (top-
level) process, whose process ID was 1234.

If a job is started with ‘&|’ or ‘&!’, then that job is immediately disowned. After startup, it does
not have a place in the job table, and is not subject to the job control features described here.

If you are running a job and wish to do something else you may hit the key ~Z (control-Z)
which sends a TSTP signal to the current job: this key may be redefined by the susp option
of the external stty command. The shell will then normally indicate that the job has been
‘suspended’, and print another prompt. You can then manipulate the state of this job, putting
it in the background with the bg command, or run some other commands and then eventually
bring the job back into the foreground with the foreground command fg. A ~Z takes effect
immediately and is like an interrupt in that pending output and unread input are discarded
when it is typed.

A job being run in the background will suspend if it tries to read from the terminal.

Note that if the job running in the foreground is a shell function, then suspending it will have
the effect of causing the shell to fork. This is necessary to separate the function’s state from
that of the parent shell performing the job control, so that the latter can return to the command
line prompt. As a result, even if fg is used to continue the job the function will no longer be
part of the parent shell, and any variables set by the function will not be visible in the parent
shell. Thus the behaviour is different from the case where the function was never suspended.
Zsh is different from many other shells in this regard.

One additional side effect is that use of disown with a job created by suspending shell code in
this fashion is delayed: the job can only be disowned once any process started from the parent
shell has terminated. At that point, the disowned job disappears silently from the job list.

Chapter 10: Jobs & Signals 28

The same behaviour is found when the shell is executing code as the right hand side of a pipeline
or any complex shell construct such as if, for, etc., in order that the entire block of code can be
managed as a single job. Background jobs are normally allowed to produce output, but this can
be disabled by giving the command ‘stty tostop’. If you set this tty option, then background
jobs will suspend when they try to produce output like they do when they try to read input.

When a command is suspended and continued later with the fg or wait builtins, zsh restores
tty modes that were in effect when it was suspended. This (intentionally) does not apply if the
command is continued via ‘kill -CONT’, nor when it is continued with bg.

There are several ways to refer to jobs in the shell. A job can be referred to by the process ID
of any process of the job or by one of the following;:

%number The job with the given number.
hstring The last job whose command line begins with string.

%7string The last job whose command line contains string.

YA Current job.
bt Equivalent to ‘%%’.
h= Previous job.

The shell learns immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible. If the NOTIFY option is not
set, it waits until just before it prints a prompt before it informs you. All such notifications are
sent directly to the terminal, not to the standard output or standard error.

When the monitor mode is on, each background job that completes triggers any trap set for
CHLD.

When you try to leave the shell while jobs are running or suspended, you will be warned that
“You have suspended (running) jobs’. You may use the jobs command to see what they are.
If you do this or immediately try to exit again, the shell will not warn you a second time; the
suspended jobs will be terminated, and the running jobs will be sent a SIGHUP signal, if the HUP
option is set.

To avoid having the shell terminate the running jobs, either use the nohup(1) command or the
disown builtin.

10.2 Signals

The INT and QUIT signals for an invoked command are ignored if the command is followed by ‘&’
and the MONITOR option is not active. The shell itself always ignores the QUIT signal. Otherwise,
signals have the values inherited by the shell from its parent (but see the TRAPNAL special
functions in Chapter 9 [Functions|, page 22).

Certain jobs are run asynchronously by the shell other than those explicitly put into the back-
ground; even in cases where the shell would usually wait for such jobs, an explicit exit command
or exit due to the option ERR_EXIT will cause the shell to exit without waiting. Examples of such
asynchronous jobs are process substitution, see Section 14.2 [Process Substitution], page 45, and
the handler processes for multios, see the section Multios in Chapter 7 [Redirection], page 17.

Chapter 11: Arithmetic Evaluation 29

11 Arithmetic Evaluation

The shell can perform integer and floating point arithmetic, either using the builtin let, or via
a substitution of the form $((...)). For integers, the shell is usually compiled to use 8-byte
precision where this is available, otherwise precision is 4 bytes. This can be tested, for example,
by giving the command ‘print - $((12345678901))’; if the number appears unchanged,
the precision is at least 8 bytes. Floating point arithmetic always uses the ‘double’ type with
whatever corresponding precision is provided by the compiler and the library.

The let builtin command takes arithmetic expressions as arguments; each is evaluated sepa-
rately. Since many of the arithmetic operators, as well as spaces, require quoting, an alternative
form is provided: for any command which begins with a ‘((’, all the characters until a matching
))’ are treated as a double-quoted expression and arithmetic expansion performed as for an
argument of let. More precisely, ‘((...))’ is equivalent to ‘let "..."’. The return status is 0 if
the arithmetic value of the expression is non-zero, 1 if it is zero, and 2 if an error occurred.

For example, the following statement
((val =2 + 1))
is equivalent to
let "val = 2 + 1"
both assigning the value 3 to the shell variable val and returning a zero status.

Integers can be in bases other than 10. A leading ‘0x’ or ‘0X’ denotes hexadecimal and a leading
‘Ob’ or ‘OB’ binary. Integers may also be of the form ‘base#n’, where base is a decimal number
between two and thirty-six representing the arithmetic base and n is a number in that base (for
example, ‘16#ff’ is 255 in hexadecimal). The base# may also be omitted, in which case base 10
is used. For backwards compatibility the form ‘[baseln’ is also accepted.

An integer expression or a base given in the form ‘base#n’ may contain underscores (‘_’) after

the leading digit for visual guidance; these are ignored in computation. Examples are 1_000_000
or Oxffff_ffff which are equivalent to 1000000 and Oxffffffff respectively.

It is also possible to specify a base to be used for output in the form ‘[#base]’, for example
‘[#16]°. This is used when outputting arithmetical substitutions or when assigning to scalar
parameters, but an explicitly defined integer or floating point parameter will not be affected. If
an integer variable is implicitly defined by an arithmetic expression, any base specified in this
way will be set as the variable’s output arithmetic base as if the option ‘-i base’ to the typeset
builtin had been used. The expression has no precedence and if it occurs more than once in
a mathematical expression, the last encountered is used. For clarity it is recommended that it
appear at the beginning of an expression. As an example:

typeset -i 16 y

print $(([#8] x = 32, y = 32))

print $x $y
outputs first ‘8#40°, the rightmost value in the given output base, and then ‘8#40 16#20’,
because y has been explicitly declared to have output base 16, while x (assuming it does not
already exist) is implicitly typed by the arithmetic evaluation, where it acquires the output base
8.
The base may be replaced or followed by an underscore, which may itself be followed by a
positive integer (if it is missing the value 3 is used). This indicates that underscores should be
inserted into the output string, grouping the number for visual clarity. The following integer
specifies the number of digits to group together. For example:

setopt cbases

print $(([#16_4] 65536 ** 2))

outputs ‘0x1_0000_0000’.

Chapter 11: Arithmetic Evaluation 30

The feature can be used with floating point numbers, in which case the base must be omitted;
grouping is away from the decimal point. For example,

zmodload zsh/mathfunc
print $(C [#_] sqrt(le7)))
outputs ‘3_162.277_660_168_379_5" (the number of decimal places shown may vary).

If the C_BASES option is set, hexadecimal numbers are output in the standard C format, for
example ‘OxFF’ instead of the usual ‘16#FF’. If the option OCTAL_ZEROES is also set (it is not
by default), octal numbers will be treated similarly and hence appear as ‘077’ instead of ‘8#77’.
This option has no effect on the output of bases other than hexadecimal and octal, and these
formats are always understood on input.

When an output base is specified using the ‘ [#base]’ syntax, an appropriate base prefix will be
output if necessary, so that the value output is valid syntax for input. If the # is doubled, for
example ‘ [##16]°, then no base prefix is output.

Floating point constants are recognized by the presence of a decimal point or an exponent. The
decimal point may be the first character of the constant, but the exponent character e or E may
not, as it will be taken for a parameter name. All numeric parts (before and after the decimal
point and in the exponent) may contain underscores after the leading digit for visual guidance;
these are ignored in computation.

An arithmetic expression uses nearly the same syntax and associativity of expressions as in C.
In the native mode of operation, the following operators are supported (listed in decreasing
order of precedence):
+ -7+ -

unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement

<< >> bitwise shift left, right
& bitwise AND
- bitwise XOR
| bitwise OR
*% exponentiation
x /% multiplication, division, modulus (remainder)
+ - addition, subtraction
< > <= >=
comparison

== I= equality and inequality
&& logical AND
[l =" logical OR, XOR

7 ternary operator
= += -= x= [= Y= &= "= |= <<= >>= &&= ||= ""= *x*=
assignment
s comma operator
The operators ‘&&’, ‘I |’, ‘«&=’, and ‘| |=" are short-circuiting, and only one of the latter two

expressions in a ternary operator is evaluated. Note the precedence of the bitwise AND, OR,
and XOR operators.

Chapter 11: Arithmetic Evaluation 31

With the option C_PRECEDENCES the precedences (but no other properties) of the operators are
altered to be the same as those in most other languages that support the relevant operators:

L =
unary plus/minus, logical NOT, complement, {pre,post}{in,de}crement
*% exponentiation
x /% multiplication, division, modulus (remainder)
+ - addition, subtraction
<< >> bitwise shift left, right
<> <= >=
comparison
== I= equality and inequality
& bitwise AND
- bitwise XOR
| bitwise OR
&& logical AND
e logical XOR
'l logical OR
? ternary operator
= += —= %= [= Y= &= "= |= <<= >>= &&= ||= "= *xx=
assignment
s comima operator

Note the precedence of exponentiation in both cases is below that of unary operators, hence
‘=3**2’ evaluates as ‘9’, not ‘-9’. Use parentheses where necessary: ‘-=(3**2)’. This is for
compatibility with other shells.

Mathematical functions can be called with the syntax ‘func(args)’, where the function decides
if the args is used as a string or a comma-separated list of arithmetic expressions. The shell
currently defines no mathematical functions by default, but the module zsh/mathfunc may be
loaded with the zmodload builtin to provide standard floating point mathematical functions.

An expression of the form ‘##x’ where x is any character sequence such as ‘a’, ‘"A’, or ‘\M-\C-x’
gives the value of this character and an expression of the form ‘#name’ gives the value of the
first character of the contents of the parameter name. Character values are according to the
character set used in the current locale; for multibyte character handling the option MULTIBYTE
must be set. Note that this form is different from ‘$#name’, a standard parameter substitution
which gives the length of the parameter name. ‘#\’ is accepted instead of ‘##’, but its use is
deprecated.

Named parameters and subscripted arrays can be referenced by name within an arithmetic
expression without using the parameter expansion syntax. For example,

((val2 = vall * 2))
assigns twice the value of $vall to the parameter named val2.
An internal integer representation of a named parameter can be specified with the integer
builtin. Arithmetic evaluation is performed on the value of each assignment to a named param-

eter declared integer in this manner. Assigning a floating point number to an integer results in
rounding towards zero.

Chapter 12: Conditional Expressions 32

Likewise, floating point numbers can be declared with the float builtin; there are two types,
differing only in their output format, as described for the typeset builtin. The output format
can be bypassed by using arithmetic substitution instead of the parameter substitution, i.e.
‘${float}’ uses the defined format, but ‘$ ((float))’ uses a generic floating point format.

Promotion of integer to floating point values is performed where necessary. In addition, if any
operator which requires an integer (‘&’, ‘|’, ¢°’, ‘<<’; *>>’ and their equivalents with assignment)
is given a floating point argument, it will be silently rounded towards zero except for *~’ which
rounds down.

Users should beware that, in common with many other programming languages but not software
designed for calculation, the evaluation of an expression in zsh is taken a term at a time and
promotion of integers to floating point does not occur in terms only containing integers. A
typical result of this is that a division such as 6/8 is truncated, in this being rounded towards 0.
The FORCE_FLOAT shell option can be used in scripts or functions where floating point evaluation
is required throughout.

Scalar variables can hold integer or floating point values at different times; there is no memory
of the numeric type in this case.

If a variable is first assigned in a numeric context without previously being declared, it will be
implicitly typed as integer or float and retain that type either until the type is explicitly
changed or until the end of the scope. This can have unforeseen consequences. For example, in
the loop

for ((£ =0; £f<1; f+=10.1)); do
use $f
done

if £ has not already been declared, the first assignment will cause it to be created as an integer,
and consequently the operation ‘f += 0.1’ will always cause the result to be truncated to zero,
so that the loop will fail. A simple fix would be to turn the initialization into ‘f = 0.0’. It is
therefore best to declare numeric variables with explicit types.

12 Conditional Expressions

A conditional expression is used with the [[compound command to test attributes of files and
to compare strings. Each expression can be constructed from one or more of the following unary
or binary expressions:

-a file true if file exists.

-b file true if file exists and is a block special file.

-c file true if file exists and is a character special file.
-d file true if file exists and is a directory.

-e file true if file exists.

-f file true if file exists and is a regular file.

-g file true if file exists and has its setgid bit set.

-h file true if file exists and is a symbolic link.

-k file true if file exists and has its sticky bit set.

-n string true if length of string is non-zero.

Chapter 12: Conditional Expressions 33

-0 option true if option named option is on. option may be a single character, in which case
it is a single letter option name. (See Section 16.1 [Specifying Options], page 98.)

When no option named option exists, and the POSIX_BUILTINS option hasn’t been
set, return 3 with a warning. If that option is set, return 1 with no warning.

-p file true if file exists and is a FIFO special file (named pipe).

-r file true if file exists and is readable by current process.

-s file true if file exists and has size greater than zero.

-t fd true if file descriptor number fd is open and associated with a terminal device. (note:

fd is not optional)
-u file true if file exists and has its setuid bit set.

-V varname
true if shell variable varname is set.

-w file true if file exists and is writable by current process.

-x file true if file exists and is executable by current process. If file exists and is a directory,
then the current process has permission to search in the directory.

-z string true if length of string is zero.

-L file true if file exists and is a symbolic link.

-0 file true if file exists and is owned by the effective user ID of this process.

-G file true if file exists and its group matches the effective group ID of this process.
-S file true if file exists and is a socket.

-N file true if file exists and its access time is not newer than its modification time.

filel -nt file2
true if filel exists and is newer than file2.

filel -ot file2
true if filel exists and is older than file2.

filel -ef file2
true if filel and file2 exist and refer to the same file.

string = pattern

string == pattern
true if string matches pattern. The two forms are exactly equivalent. The ‘=’ form
is the traditional shell syntax (and hence the only one generally used with the test
and [builtins); the ‘==" form provides compatibility with other sorts of computer
language.

string '= pattern
true if string does not match pattern.

string =" regexp
true if string matches the regular expression regexp. If the option RE_MATCH_PCRE is
set regexp is tested as a PCRE regular expression using the zsh/pcre module, else
it is tested as a POSIX extended regular expression using the zsh/regex module.
Upon successful match, some variables will be updated; no variables are changed if
the matching fails.

If the option BASH_REMATCH is not set the scalar parameter MATCH is set to the
substring that matched the pattern and the integer parameters MBEGIN and MEND to

Chapter 12: Conditional Expressions 34

the index of the start and end, respectively, of the match in string, such that if string
is contained in variable var the expression ‘${var [$MBEGIN, $MEND] }’ is identical to
‘$MATCH’. The setting of the option KSH_ARRAYS is respected. Likewise, the array
match is set to the substrings that matched parenthesised subexpressions and the
arrays mbegin and mend to the indices of the start and end positions, respectively, of
the substrings within string. The arrays are not set if there were no parenthesised
subexpressions. For example, if the string ‘a short string’ is matched against
the regular expression ‘s(...)t’, then (assuming the option KSH_ARRAYS is not set)
MATCH, MBEGIN and MEND are ‘short’, 3 and 7, respectively, while match, mbegin and
mend are single entry arrays containing the strings ‘hor’, ‘4’ and ‘6’, respectively.

If the option BASH_REMATCH is set the array BASH_REMATCH is set to the substring
that matched the pattern followed by the substrings that matched parenthesised
subexpressions within the pattern.

stringl < string2
true if stringl comes before string2 based on ASCII value of their characters.

stringl > string2
true if stringl comes after string2 based on ASCII value of their characters.

expl -eq exp2
true if expl is numerically equal to exp2. Note that for purely numeric comparisons
use of the ((...)) builtin described in Chapter 11 [Arithmetic Evaluation|, page 29,
is more convenient than conditional expressions.

expl -ne exp2
true if expl is numerically not equal to exp2.
expl -1t exp?2
true if expl is numerically less than exp?2.
expl -gt exp2
true if expl is numerically greater than exp2.
expl -le exp2
true if expl is numerically less than or equal to exp2.
expl -ge exp2
true if expl is numerically greater than or equal to exp2.

(exp) true if exp is true.
I exp true if exp is false.

expl && exp2
true if expl and exp2 are both true.

expl || exp2
true if either expl or exp2 is true.

For compatibility, if there is a single argument that is not syntactically significant, typically a
variable, the condition is treated as a test for whether the expression expands as a string of
non-zero length. In other words, [[$var 1] is the same as [[-n $var 1]. It is recommended
that the second, explicit, form be used where possible.

Normal shell expansion is performed on the file, string and pattern arguments, but the result of
each expansion is constrained to be a single word, similar to the effect of double quotes.

Filename generation is not performed on any form of argument to conditions. However, it can
be forced in any case where normal shell expansion is valid and when the option EXTENDED_GLOB

Chapter 13: Prompt Expansion 35

is in effect by using an explicit glob qualifier of the form (#q) at the end of the string. A
normal glob qualifier expression may appear between the ‘q’ and the closing parenthesis; if
none appears the expression has no effect beyond causing filename generation. The results of
filename generation are joined together to form a single word, as with the results of other forms
of expansion.

This special use of filename generation is only available with the [[syntax. If the condition
occurs within the [or test builtin commands then globbing occurs instead as part of normal
command line expansion before the condition is evaluated. In this case it may generate multiple
words which are likely to confuse the syntax of the test command.

For example,
[[-n filex*(#qN) 1]

produces status zero if and only if there is at least one file in the current directory beginning
with the string ‘file’. The globbing qualifier N ensures that the expression is empty if there is
no matching file.

Pattern metacharacters are active for the pattern arguments; the patterns are the same as those
used for filename generation, see Section 14.8 [Filename Generation], page 65, but there is no
special behaviour of ‘/’ nor initial dots, and no glob qualifiers are allowed.

In each of the above expressions, if file is of the form ‘/dev/fd/n’, where n is an integer, then
the test applied to the open file whose descriptor number is n, even if the underlying system
does not support the /dev/fd directory.

In the forms which do numeric comparison, the expressions exp undergo arithmetic expansion
as if they were enclosed in $((...)).

For example, the following:
[[¢ -f foo || -f bar) && $report = y*]] && print File exists.

tests if either file foo or file bar exists, and if so, if the value of the parameter report begins
with ‘y’; if the complete condition is true, the message ‘File exists.’ is printed.

13 Prompt Expansion

13.1 Expansion of Prompt Sequences

Prompt sequences undergo a special form of expansion. This type of expansion is also available
using the -P option to the print builtin.

If the PROMPT_SUBST option is set, the prompt string is first subjected to parameter expansion,
command substitution and arithmetic expansion. See Chapter 14 [Expansion], page 40.

Certain escape sequences may be recognised in the prompt string.

If the PROMPT_BANG option is set, a ‘!’ in the prompt is replaced by the current history event
number. A literal ‘!’ may then be represented as ‘!!’.

If the PROMPT_PERCENT option is set, certain escape sequences that start with ‘%’ are expanded.
Many escapes are followed by a single character, although some of these take an optional integer
argument that should appear between the ‘%’ and the next character of the sequence. More
complicated escape sequences are available to provide conditional expansion.

13.2 Simple Prompt Escapes

Chapter 13: Prompt Expansion 36

13.2.1 Special characters

Yot
3

A
A 9.

13.2.2 Login information

Al
%M

%m

%n

hy

The line (tty) the user is logged in on, without ‘/dev/’ prefix. If the name starts
with ‘/dev/tty’, that prefix is stripped.

The full machine hostname.

The hostname up to the first *.”. An integer may follow the ‘%’ to specify how
many components of the hostname are desired. With a negative integer, trailing
components of the hostname are shown.

$USERNAME.

The line (tty) the user is logged in on, without ‘/dev/’ prefix. This does not treat
‘/dev/tty’ names specially.

13.2.3 Shell state

%t

h?
e

-

%d
h

o~

%he

%h
%!

%i

A ‘# if the shell is running with privileges, a ‘%’ if not. Equivalent to ‘% (!.#.%%) .
The definition of ‘privileged’, for these purposes, is that either the effective user ID
is zero, or, if POSIX.1le capabilities are supported, that at least one capability is
raised in either the Effective or Inheritable capability vectors.

The return status of the last command executed just before the prompt.

The status of the parser, i.e. the shell constructs (like ‘if’ and ‘for’) that have been
started on the command line. If given an integer number that many strings will be
printed; zero or negative or no integer means print as many as there are. This is
most useful in prompts PS2 for continuation lines and PS4 for debugging with the
XTRACE option; in the latter case it will also work non-interactively.

The status of the parser in reverse. This is the same as ‘%_" other than the order of
strings. It is often used in RPS2.

Current working directory. If an integer follows the ‘%’, it specifies a number of
trailing components of the current working directory to show; zero means the whole
path. A negative integer specifies leading components, i.e. %-1d specifies the first
component.

As %d and %/, but if the current working directory starts with $HOME, that part is
replaced by a ‘~’. Furthermore, if it has a named directory as its prefix, that part
is replaced by a <’ followed by the name of the directory, but only if the result is
shorter than the full path; Section 14.7 [Filename Expansion], page 63.

Evaluation depth of the current sourced file, shell function, or eval. This is incre-
mented or decremented every time the value of %N is set or reverted to a previous
value, respectively. This is most useful for debugging as part of $PS4.

Current history event number.

The line number currently being executed in the script, sourced file, or shell function
given by %N. This is most useful for debugging as part of $P34.

Chapter 13: Prompt Expansion 37

/3

h]
%L
A

%x

%c
%
%C

The line number currently being executed in the file %x. This is similar to %i, but
the line number is always a line number in the file where the code was defined, even
if the code is a shell function.

The number of jobs.
The current value of $SHLVL.

The name of the script, sourced file, or shell function that zsh is currently executing,
whichever was started most recently. If there is none, this is equivalent to the
parameter $0. An integer may follow the ‘%’ to specify a number of trailing path
components to show; zero means the full path. A negative integer specifies leading
components.

The name of the file containing the source code currently being executed. This
behaves as %N except that function and eval command names are not shown, instead
the file where they were defined.

Trailing component of the current working directory. An integer may follow the ‘%’
to get more than one component. Unless ‘%C’ is used, tilde contraction is performed
first. These are deprecated as %c and %C are equivalent to %1~ and %1/, respectively,
while explicit positive integers have the same effect as for the latter two sequences.

13.2.4 Date and time

%D
hT

AT
%@

yAS
how
AUl
#D{string}

The date in yy-mm-dd format.

Current time of day, in 24-hour format.

Current time of day, in 12-hour, am/pm format.
Current time of day in 24-hour format, with seconds.
The date in day-dd format.

The date in mm/dd/yy format.

string is formatted using the strftime function. See strftime(3) for more details.
Various zsh extensions provide numbers with no leading zero or space if the number
is a single digit:

Wt a day of the month
K the hour of the day on the 24-hour clock
AR the hour of the day on the 12-hour clock

In addition, if the system supports the POSIX gettimeofday system call, %. pro-
vides decimal fractions of a second since the epoch with leading zeroes. By default
three decimal places are provided, but a number of digits up to 9 may be given
following the %; hence %6. outputs microseconds, and %9. outputs nanoseconds.
(The latter requires a nanosecond-precision clock_gettime; systems lacking this
will return a value multiplied by the appropriate power of 10.) A typical example
of this is the format ‘4D{%H:%M:%S.%.} .

The GNU extension %N is handled as a synonym for %9..

Additionally, the GNU extension that a ‘=’ between the % and the format character
causes a leading zero or space to be stripped is handled directly by the shell for

Chapter 13: Prompt Expansion 38

the format characters d, £, H, k, 1, m, M, S and y; any other format characters are
provided to the system’s strftime(3) with any leading ‘-’ present, so the handling is
system dependent. Further GNU (or other) extensions are also passed to strftime(3)
and may work if the system supports them.

13.2.5 Visual effects

%B (%b)
hE

WU (%u)
%S (%s)
WF (W)

%K (%k)

AOWA

hG

Start (stop) boldface mode.
Clear to end of line.

Start (stop) underline mode.
Start (stop) standout mode.

Start (stop) using a different foreground colour, if supported by the terminal. The
colour may be specified two ways: either as a numeric argument, as normal, or by
a sequence in braces following the %F, for example %F{red}. In the latter case the
values allowed are as described for the fg zle_highlight attribute; Section 18.7
[Character Highlighting], page 197. This means that numeric colours are allowed in
the second format also.

Start (stop) using a different bacKground colour. The syntax is identical to that for
%F and %f.

Include a string as a literal escape sequence. The string within the braces should
not change the cursor position. Brace pairs can nest.

A positive numeric argument between the % and the { is treated as described for %G
below.

Within a %{...%} sequence, include a ‘glitch’: that is, assume that a single character
width will be output. This is useful when outputting characters that otherwise
cannot be correctly handled by the shell, such as the alternate character set on
some terminals. The characters in question can be included within a %{...%} sequence
together with the appropriate number of %G sequences to indicate the correct width.
An integer between the ‘)’ and ‘G’ indicates a character width other than one.
Hence %{seq’%2G%} outputs seq and assumes it takes up the width of two standard
characters.

Multiple uses of %G accumulate in the obvious fashion; the position of the %G is
unimportant. Negative integers are not handled.

Note that when prompt truncation is in use it is advisable to divide up output into

single characters within each %{...%} group so that the correct truncation point can
be found.

13.3 Conditional Substrings in Prompts

YA

The value of the first element of the psvar array parameter. Following the ‘%’ with
an integer gives that element of the array. Negative integers count from the end of
the array.

%(x . true-text . false-text)

Specifies a ternary expression. The character following the x is arbitrary; the same
character is used to separate the text for the ‘true’ result from that for the ‘false’
result. This separator may not appear in the true-text, except as part of a %-
escape sequence. A ‘)’ may appear in the false-text as ‘%)’. true-text and false-
text may both contain arbitrarily-nested escape sequences, including further ternary
expressions.

Chapter 13: Prompt Expansion 39

%h<string<
%h>string>
% [xstring]

The left parenthesis may be preceded or followed by a positive integer n, which
defaults to zero. A negative integer will be multiplied by -1, except as noted below
for ‘1°. The test character x may be any of the following:

! True if the shell is running with privileges.
True if the effective uid of the current process is n.
? True if the exit status of the last command was n.

True if at least n shell constructs were started.

(/: True if the current absolute path has at least n elements relative to the
root directory, hence / is counted as 0 elements.

c

- True if the current path, with prefix replacement, has at least n elements
relative to the root directory, hence / is counted as 0 elements.

D True if the month is equal to n (January = 0).

d True if the day of the month is equal to n.

e True if the evaluation depth is at least n.

g True if the effective gid of the current process is n.

j True if the number of jobs is at least n.

L True if the SHLVL parameter is at least n.

1 True if at least n characters have already been printed on the current
line. When n is negative, true if at least abs(n) characters remain
before the opposite margin (thus the left margin for RPROMPT).

S True if the SECONDS parameter is at least n.

T True if the time in hours is equal to n.

t True if the time in minutes is equal to n.

v True if the array psvar has at least n elements.

v True if element n of the array psvar is set and non-empty.

W True if the day of the week is equal to n (Sunday = 0).

Specifies truncation behaviour for the remainder of the prompt string. The third,
deprecated, form is equivalent to ‘%xstringx’, i.e. x may be ‘<’ or >’. The string
will be displayed in place of the truncated portion of any string; note this does not
undergo prompt expansion.

The numeric argument, which in the third form may appear immediately after
the ‘[’, specifies the maximum permitted length of the various strings that can
be displayed in the prompt. In the first two forms, this numeric argument may
be negative, in which case the truncation length is determined by subtracting the
absolute value of the numeric argument from the number of character positions
remaining on the current prompt line. If this results in a zero or negative length,
a length of 1 is used. In other words, a negative argument arranges that after

Chapter 14: Expansion 40

truncation at least n characters remain before the right margin (left margin for
RPROMPT).

The forms with ‘<’ truncate at the left of the string, and the forms with ‘>’ truncate
at the right of the string. For example, if the current directory is ‘/home/pike’,
the prompt ‘%8<..<%/’ will expand to ‘..e/pike’. In this string, the terminating
character (‘<’, >’ or ‘1’), or in fact any character, may be quoted by a preceding
‘\’; note when using print -P, however, that this must be doubled as the string is
also subject to standard print processing, in addition to any backslashes removed
by a double quoted string: the worst case is therefore ‘print -P "%<\\\\<<...".

If the string is longer than the specified truncation length, it will appear in full,
completely replacing the truncated string.

The part of the prompt string to be truncated runs to the end of the string, or to
the end of the next enclosing group of the ‘% (’ construct, or to the next truncation
encountered at the same grouping level (i.e. truncations inside a ‘% (’ are separate),
which ever comes first. In particular, a truncation with argument zero (e.g., ‘%<<’)
marks the end of the range of the string to be truncated while turning off truncation
from there on. For example, the prompt ‘%10<...<%~%<<%# ’ will print a truncated
representation of the current directory, followed by a ‘%’ or ‘#’, followed by a space.
Without the ‘%<<’; those two characters would be included in the string to be trun-
cated. Note that ‘%-0<<’ is not equivalent to ‘%<<’ but specifies that the prompt is
truncated at the right margin.

Truncation applies only within each individual line of the prompt, as delimited
by embedded newlines (if any). If the total length of any line of the prompt after
truncation is greater than the terminal width, or if the part to be truncated contains
embedded newlines, truncation behavior is undefined and may change in a future
version of the shell. Use ‘%-n(1. true-text. false-text)’ to remove parts of the prompt
when the available space is less than n.

14 Expansion

The following types of expansions are performed in the indicated order in five steps:

History Expansion
This is performed only in interactive shells.

Alias Expansion
Aliases are expanded immediately before the command line is parsed as explained
in Section 6.8 [Aliasing], page 16.

Process Substitution

Parameter Expansion

Command Substitution

Arithmetic Expansion

Brace Expansion
These five are performed in left-to-right fashion. On each argument, any of the five
steps that are needed are performed one after the other. Hence, for example, all the
parts of parameter expansion are completed before command substitution is started.
After these expansions, all unquoted occurrences of the characters ‘\’,*’” and ‘"’ are
removed.

Chapter 14: Expansion 41

Filename Expansion
If the SH_FILE_EXPANSION option is set, the order of expansion is modified for com-
patibility with sh and ksh. In that case filename expansion is performed immediately
after alias expansion, preceding the set of five expansions mentioned above.

Filename Generation
This expansion, commonly referred to as globbing, is always done last.

The following sections explain the types of expansion in detail.

14.1 History Expansion

History expansion allows you to use words from previous command lines in the command line
you are typing. This simplifies spelling corrections and the repetition of complicated commands
or arguments.

Immediately before execution, each command is saved in the history list, the size of which is
controlled by the HISTSIZE parameter. The one most recent command is always retained in any
case. Each saved command in the history list is called a history event and is assigned a number,
beginning with 1 (one) when the shell starts up. The history number that you may see in your
prompt (see Chapter 13 [Prompt Expansion], page 35) is the number that is to be assigned to
the next command.

14.1.1 Overview

A history expansion begins with the first character of the histchars parameter, which is ‘!’ by
default, and may occur anywhere on the command line, including inside double quotes (but not
inside single quotes ’. ..’ or C-style quotes $’ ...’ nor when escaped with a backslash).

The first character is followed by an optional event designator (Section 14.1.2 [Event Desig-
nators|, page 42) and then an optional word designator (Section 14.1.3 [Word Designators],
page 42); if neither of these designators is present, no history expansion occurs.

Input lines containing history expansions are echoed after being expanded, but before any other
expansions take place and before the command is executed. It is this expanded form that is
recorded as the history event for later references.

History expansions do not nest.

By default, a history reference with no event designator refers to the same event as any preceding
history reference on that command line; if it is the only history reference in a command, it refers
to the previous command. However, if the option CSH_JUNKIE_HISTORY is set, then every history
reference with no event specification always refers to the previous command.

For example, ‘!’ is the event designator for the previous command, so ‘!'!:1’ always refers to
the first word of the previous command, and ‘! !$’ always refers to the last word of the previous
command. With CSH_JUNKIE_HISTORY set, then ‘!:1’ and ‘!'$’ function in the same manner as
“11:17 and ‘!!1$’, respectively. Conversely, if CSH_JUNKIE_HISTORY is unset, then ‘!:1” and ‘!'$’
refer to the first and last words, respectively, of the same event referenced by the nearest other
history reference preceding them on the current command line, or to the previous command if
there is no preceding reference.

The character sequence ‘~foo~bar’ (where ‘~’ is actually the second character of the histchars
parameter) repeats the last command, replacing the string foo with bar. More precisely,
the sequence ‘~foo~bar™’ is synonymous with ‘!!:s~foo~bar™~’, hence other modifiers (see
Section 14.1.4 [Modifiers|, page 43) may follow the final ‘*’. In particular, ‘~foo~bar~:G’ per-
forms a global substitution.

~3

If the shell encounters the character sequence ‘!"” in the input, the history mechanism is tem-
porarily disabled until the current list (see Chapter 6 [Shell Grammar], page 9) is fully parsed.

Chapter 14: Expansion 42

The ‘1" is removed from the input, and any subsequent ‘!’ characters have no special signifi-
cance.

A less convenient but more comprehensible form of command history support is provided by the
fc builtin.

14.1.2 Event Designators

An event designator is a reference to a command-line entry in the history list. In the list below,
remember that the initial ‘!’ in each item may be changed to another character by setting the
histchars parameter.

! Start a history expansion, except when followed by a blank, newline, ‘=" or ‘(.

If followed immediately by a word designator (Section 14.1.3 [Word Designators|,
page 42), this forms a history reference with no event designator (Section 14.1.1
[Overview|, page 41).

I Refer to the previous command. By itself, this expansion repeats the previous

command.
In Refer to command-line n.
I-n Refer to the current command-line minus n.
Istr Refer to the most recent command starting with str.
1 7str(?] Refer to the most recent command containing str. The trailing ‘?’ is necessary if

this reference is to be followed by a modifier or followed by any text that is not to
be considered part of str.

4 Refer to the current command line typed in so far. The line is treated as if it were
complete up to and including the word before the one with the ‘!#’ reference.

1{...} Insulate a history reference from adjacent characters (if necessary).

14.1.3 Word Designators

A word designator indicates which word or words of a given command line are to be included in
a history reference. A ‘:’ usually separates the event specification from the word designator. It

may be omitted only if the word designator begins with a *~’, ‘§’, ‘*’, ‘=" or ‘%’. Word designators
include:

0 The first input word (command).

n The nth argument.

- The first argument. That is, 1.

$ The last argument.

% The word matched by (the most recent) ?str search.

X-y A range of words; x defaults to 0.

* All the arguments, or a null value if there are none.

X* Abbreviates ‘x-$’.

X- Like ‘x*’ but omitting word $.

Note that a ‘%’ word designator works only when used in one of ‘1%’, ‘':% or ‘!?str?:%’, and

only when used after a !? expansion (possibly in an earlier command). Anything else results in
an error, although the error may not be the most obvious one.

Chapter 14: Expansion 43

14.1.4 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’. These modifiers also work on the result of filename generation
and parameter expansion, except where noted.

a

h [digits]

Turn a file name into an absolute path: prepends the current directory, if necessary;
remove ‘.’ path segments; and remove ‘..’ path segments and the segments that

immediately precede them.

This transformation is agnostic about what is in the filesystem, i.e. is on the logical,
not the physical directory. It takes place in the same manner as when changing
directories when neither of the options CHASE_DOTS or CHASE_LINKS is set. For
example, ‘/before/here/../after’ is always transformed to ‘/before/after’, re-
gardless of whether ‘/before/here’ exists or what kind of object (dir, file, symlink,
etc.) it is.

Turn a file name into an absolute path as the ‘a’ modifier does, and then pass the
result through the realpath(3) library function to resolve symbolic links.

Note: on systems that do not have a realpath(3) library function, symbolic links
are not resolved, so on those systems ‘a’ and ‘A’ are equivalent.

Note: foo:A and realpath(foo) are different on some inputs. For realpath(foo)
semantics, see the ‘P* modifier.

Resolve a command name into an absolute path by searching the command path
given by the PATH variable. This does not work for commands containing directory
parts. Note also that this does not usually work as a glob qualifier unless a file of
the same name is found in the current directory.

Remove all but the part of the filename extension following the ¢.’; see the definition
of the filename extension in the description of the r modifier below. Note that
according to that definition the result will be empty if the string ends with a ‘..

Remove a trailing pathname component, shortening the path by one directory level:
this is the ‘head’ of the pathname. This works like ‘dirname’. If the h is followed im-
mediately (with no spaces or other separator) by any number of decimal digits, and
the value of the resulting number is non-zero, that number of leading components
is preserved instead of the final component being removed. In an absolute path the
leading ‘/’ is the first component, so, for example, if var=/my/path/to/something,
then ${var:h3} substitutes /my/path. Consecutive ‘/’s are treated the same as a
single ‘/’. In parameter substitution, digits may only be used if the expression is in
braces, so for example the short form substitution $var:h2 is treated as ${var:h}2,
not as ${var:h2}. No restriction applies to the use of digits in history substitution
or globbing qualifiers. If more components are requested than are present, the en-
tire path is substituted (so this does not trigger a ‘failed modifier’ error in history
expansion).

Convert the words to all lowercase.
Print the new command but do not execute it. Only works with history expansion.

Turn a file name into an absolute path, like realpath(3). The resulting path will
be absolute, will refer to the same directory entry as the input filename, and none
of its components will be symbolic links or equal to *.” or ‘. .".

Unlike realpath(3), non-existent trailing components are permitted and preserved.
Quote the substituted words, escaping further substitutions. Works with history

expansion and parameter expansion, though for parameters it is only useful if the
resulting text is to be re-evaluated such as by eval.

Chapter 14: Expansion 44

Q Remove one level of quotes from the substituted words.
T Remove a filename extension leaving the root name. Strings with no filename ex-
tension are not altered. A filename extension is a ‘.’ followed by any number of

characters (including zero) that are neither ‘.’ nor ‘/’ and that continue to the end
of the string. For example, the extension of ‘foo.orig.c’ is ‘.c’, and ‘dir.c/foo’
has no extension.

s/1/r[/] Substitute r for I as described below. The substitution is done only for the first
string that matches I. For arrays and for filename generation, this applies to each
word of the expanded text. See below for further notes on substitutions.

The forms ‘gs/1/r’ and ‘s/1/r/:G perform global substitution, i.e. substitute every
occurrence of r for I. Note that the g or :G must appear in exactly the position
shown.

See further notes on this form of substitution below.

& Repeat the previous s substitution. Like s, may be preceded immediately by a g.
In parameter expansion the & must appear inside braces, and in filename generation
it must be quoted with a backslash.

t [digits] Remove all leading pathname components, leaving the final component (tail). This
works like ‘basename’. Any trailing slashes are first removed. Decimal digits are
handled as described above for (h), but in this case that number of trailing compo-
nents is preserved instead of the default 1; 0 is treated the same as 1.

u Convert the words to all uppercase.
X Like g, but break into words at whitespace. Does not work with parameter expan-
sion.

The s/1/r/ substitution works as follows. By default the left-hand side of substitutions are not
patterns, but character strings. Any character can be used as the delimiter in place of ‘//°. A
backslash quotes the delimiter character. The character ‘&’, in the right-hand-side r, is replaced
by the text from the left-hand-side I. The ‘&’ can be quoted with a backslash. A null I uses
the previous string either from the previous I or from the contextual scan string s from ‘!7s’.
You can omit the rightmost delimiter if a newline immediately follows r; the rightmost ‘?’ in a
context scan can similarly be omitted. Note the same record of the last I and r is maintained
across all forms of expansion.

Note that if a ‘&’ is used within glob qualifiers an extra backslash is needed as a & is a special
character in this case.

Also note that the order of expansions affects the interpretation of I and r. When used in a
history expansion, which occurs before any other expansions, I and r are treated as literal strings
(except as explained for HIST_SUBST_PATTERN below). When used in parameter expansion, the
replacement of r into the parameter’s value is done first, and then any additional process,
parameter, command, arithmetic, or brace references are applied, which may evaluate those
substitutions and expansions more than once if I appears more than once in the starting value.
When used in a glob qualifier, any substitutions or expansions are performed once at the time
the qualifier is parsed, even before the ‘:s’ expression itself is divided into I and r sides.

If the option HIST_SUBST_PATTERN is set, I is treated as a pattern of the usual form described in
Section 14.8 [Filename Generation|, page 65. This can be used in all the places where modifiers
are available; note, however, that in globbing qualifiers parameter substitution has already taken
place, so parameters in the replacement string should be quoted to ensure they are replaced at
the correct time. Note also that complicated patterns used in globbing qualifiers may need the
extended glob qualifier notation (#q:s/.../.../) in order for the shell to recognize the expression

Chapter 14: Expansion 45

as a glob qualifier. Further, note that bad patterns in the substitution are not subject to the
NO_BAD_PATTERN option so will cause an error.

When HIST_SUBST_PATTERN is set, | may start with a # to indicate that the pattern must match

at the start of the string to be substituted, and a % may appear at the start or after an # to

indicate that the pattern must match at the end of the string to be substituted. The % or # may

be quoted with two backslashes.

For example, the following piece of filename generation code with the EXTENDED_GLOB option:
print -r —-- *.c(#q:s/#%(#b)s(*) .c/’S${match[1]}.C’/)

takes the expansion of *.c and applies the glob qualifiers in the (#q...) expression, which consists

of a substitution modifier anchored to the start and end of each word (#%). This turns on

backreferences ((#b)), so that the parenthesised subexpression is available in the replacement

string as ${match[1]}. The replacement string is quoted so that the parameter is not substituted

before the start of filename generation.

The following £, F, w and W modifiers work only with parameter expansion and filename gener-

ation. They are listed here to provide a single point of reference for all modifiers.

f Repeats the immediately (without a colon) following modifier until the resulting
word doesn’t change any more.

F:expr: Like £, but repeats only n times if the expression expr evaluates to n. Any character
can be used instead of the ‘:’; if ‘(’, ‘[’, or ‘{’ is used as the opening delimiter, the

closing delimiter should be ’)’, ‘1, or ‘}’, respectively.

W Makes the immediately following modifier work on each word in the string.
W:sep: Like w but words are considered to be the parts of the string that are separated by
sep. Any character can be used instead of the ‘:’; opening parentheses are handled

specially, see above.

14.2 Process Substitution

Each part of a command argument that takes the form ‘< (list)’, > (list)’ or ‘=(list)’ is subject to
process substitution. The expression may be preceded or followed by other strings except that,
to prevent clashes with commonly occurring strings and patterns, the last form must occur at
the start of a command argument, and the forms are only expanded when first parsing command
or assignment arguments. Process substitutions may be used following redirection operators; in
this case, the substitution must appear with no trailing string.

Note that ‘<<(list)’ is not a special syntax; it is equivalent to ‘< <(list)’, redirecting standard
input from the result of process substitution. Hence all the following documentation applies.
The second form (with the space) is recommended for clarity.

In the case of the < or > forms, the shell runs the commands in list as a subprocess of the job
executing the shell command line. If the system supports the /dev/fd mechanism, the command
argument is the name of the device file corresponding to a file descriptor; otherwise, if the system
supports named pipes (FIFOs), the command argument will be a named pipe. If the form with
> is selected then writing on this special file will provide input for list. If < is used, then the file
passed as an argument will be connected to the output of the list process. For example,

paste <(cut -f1 filel) <(cut -f3 file2) |

tee >(processl) >(process2) >/dev/null
cuts fields 1 and 3 from the files filel and file2 respectively, pastes the results together, and
sends it to the processes processl and process2.

If =(...) is used instead of <(...), then the file passed as an argument will be the name of a
temporary file containing the output of the list process. This may be used instead of the < form
for a program that expects to lseek (see lseek(2)) on the input file.

Chapter 14: Expansion 46

There is an optimisation for substitutions of the form =(<<<arg), where arg is a single-word
argument to the here-string redirection <<<. This form produces a file name containing the value
of arg after any substitutions have been performed. This is handled entirely within the current
shell. This is effectively the reverse of the special form $(<arg) which treats arg as a file name
and replaces it with the file’s contents.

The = form is useful as both the /dev/fd and the named pipe implementation of <(...) have
drawbacks. In the former case, some programmes may automatically close the file descriptor
in question before examining the file on the command line, particularly if this is necessary
for security reasons such as when the programme is running setuid. In the second case, if
the programme does not actually open the file, the subshell attempting to read from or write
to the pipe will (in a typical implementation, different operating systems may have different
behaviour) block for ever and have to be killed explicitly. In both cases, the shell actually
supplies the information using a pipe, so that programmes that expect to Iseek (see lseek(2)) on
the file will not work.

Also note that the previous example can be more compactly and efficiently written (provided
the MULTIOS option is set) as:

paste <(cut -f1 filel) <(cut -f3 file2) > >(processl) > >(process2)

The shell uses pipes instead of FIFOs to implement the latter two process substitutions in the
above example.

There is an additional problem with >(process); when this is attached to an external command,
the parent shell does not wait for process to finish and hence an immediately following command
cannot rely on the results being complete. The problem and solution are the same as described
in the section MULTIOS in Chapter 7 [Redirection|, page 17. Hence in a simplified version of
the example above:

paste <(cut -f1 filel) <(cut -f3 file2) > >(process)

(note that no MULTIOS are involved), process will be run asynchronously as far as the parent
shell is concerned. The workaround is:

{ paste <(cut -f1 filel) <(cut -f3 file2) } > >(process)
The extra processes here are spawned from the parent shell which will wait for their completion.

Another problem arises any time a job with a substitution that requires a temporary file is
disowned by the shell, including the case where ‘4!’ or ‘&|’ appears at the end of a command
containing a substitution. In that case the temporary file will not be cleaned up as the shell no
longer has any memory of the job. A workaround is to use a subshell, for example,

(mycmd =(myoutput)) &!
as the forked subshell will wait for the command to finish then remove the temporary file.

A general workaround to ensure a process substitution endures for an appropriate length of time
is to pass it as a parameter to an anonymous shell function (a piece of shell code that is run
immediately with function scope). For example, this code:

O A
print File $1:
cat $1
} =(print This be the verse)

outputs something resembling the following

File /tmp/zsh6nUOkS:
This be the verse

The temporary file created by the process substitution will be deleted when the function exits.

Chapter 14: Expansion 47

14.3 Parameter Expansion

The character ‘¢’ is used to introduce parameter expansions. See Chapter 15 [Parameters],
page 77, for a description of parameters, including arrays, associative arrays, and subscript
notation to access individual array elements.

Note in particular the fact that words of unquoted parameters are not automatically split on
whitespace unless the option SH_WORD_SPLIT is set; see references to this option below for more
details. This is an important difference from other shells. However, as in other shells, null words
are elided from unquoted parameters’ expansions.

With default options, after the assignments:

array=("first word" "" "third word")
scalar="only word"

then $array substitutes two words, ‘first word’ and ‘third word’, and $scalar substitutes a
single word ‘only word’. Note that second element of array was elided. Scalar parameters can
be elided too if their value is null (empty). To avoid elision, use quoting as follows: "$scalar" for
scalars and "${array[@]}" or "${(@)arrayl}" for arrays. (The last two forms are equivalent.)
Parameter expansions can involve flags, as in ‘${(@kv)aliases}’, and other operators, such as
‘${PREFIX:-"/usr/local"}’. Parameter expansions can also be nested. These topics will be
introduced below. The full rules are complicated and are noted at the end.

In the expansions discussed below that require a pattern, the form of the pattern is the same as
that used for filename generation; see Section 14.8 [Filename Generation]|, page 65. Note that
these patterns, along with the replacement text of any substitutions, are themselves subject
to parameter expansion, command substitution, and arithmetic expansion. In addition to the
following operations, the colon modifiers described in Section 14.1.4 [Modifiers], page 43, in
Section 14.1 [History Expansion|, page 41, can be applied: for example, ${i:s/foo/bar/?}
performs string substitution on the expansion of parameter $i.

In the following descriptions, ‘word’ refers to a single word substituted on the command line,
not necessarily a space delimited word.

${name} The value, if any, of the parameter name is substituted. The braces are required
if the expansion is to be followed by a letter, digit, or underscore that is not to be
interpreted as part of name. In addition, more complicated forms of substitution
usually require the braces to be present; exceptions, which only apply if the option
KSH_ARRAYS is not set, are a single subscript or any colon modifiers appearing after
the name, or any of the characters ‘~’, ‘=", ‘™’ ‘#’ or ‘+’ appearing before the name,
all of which work with or without braces.
If name is an array parameter, and the KSH_ARRAYS option is not set, then the
value of each element of name is substituted, one element per word. Otherwise, the
expansion results in one word only; with KSH_ARRAYS, this is the first element of an
array. No field splitting is done on the result unless the SH_WORD_SPLIT option is
set. See also the flags = and s:string:.

${+name} If name is the name of a set parameter ‘1’ is substituted, otherwise ‘0’ is substituted.

${name-word}

${name:-word}
If name is set, or in the second form is non-null, then substitute its value; otherwise
substitute word. In the second form name may be omitted, in which case word is
always substituted.

${name+word}

${name:+word}
If name is set, or in the second form is non-null, then substitute word; otherwise
substitute nothing.

Chapter 14: Expansion 48

${name=word}

${name:=word}

${name: :=word}
In the first form, if name is unset then set it to word; in the second form, if name
is unset or null then set it to word; and in the third form, unconditionally set name
to word. In all forms, the value of the parameter is then substituted.

${name?word}

${name: ?word}
In the first form, if name is set, or in the second form if name is both set and
non-null, then substitute its value; otherwise, print word and exit from the shell.
Interactive shells instead return to the prompt. If word is omitted, then a standard
message is printed.

In any of the above expressions that test a variable and substitute an alternate word, note that
you can use standard shell quoting in the word value to selectively override the splitting done
by the SH_WORD_SPLIT option and the = flag, but not splitting by the s:string: flag.

In the following expressions, when name is an array and the substitution is not quoted, or if the
‘(@)’ flag or the name[@] syntax is used, matching and replacement is performed on each array
element separately.

${name#pattern}

${name#t#tpattern}
If the pattern matches the beginning of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

${namel,pattern}

${nameYpattern}
If the pattern matches the end of the value of name, then substitute the value
of name with the matched portion deleted; otherwise, just substitute the value of
name. In the first form, the smallest matching pattern is preferred; in the second
form, the largest matching pattern is preferred.

${name:#pattern}
If the pattern matches the value of name, then substitute the empty string; oth-
erwise, just substitute the value of name. If name is an array the matching array
elements are removed (use the ‘(M)’ flag to remove the non-matched elements).

${name: | arrayname}
If arrayname is the name (N.B., not contents) of an array variable, then any ele-
ments contained in arrayname are removed from the substitution of name. If the
substitution is scalar, either because name is a scalar variable or the expression is
quoted, the elements of arrayname are instead tested against the entire expression.

${name: *arrayname}
Similar to the preceding substitution, but in the opposite sense, so that entries
present in both the original substitution and as elements of arrayname are retained
and others removed.

${name: ~arrayname}

${name: "~ ~arrayname}
Zips two arrays, such that the output array is twice as long as the shortest (longest
for ¢:~"7) of name and arrayname, with the elements alternatingly being picked from
them. For ‘:~’, if one of the input arrays is longer, the output will stop when the
end of the shorter array is reached. Thus,

Chapter 14: Expansion 49

a=(1 2 3 4); b=(a b); print ${a: Db}

will output ‘1 a 2 b’. For ‘:~"’, then the input is repeated until all of the longer
array has been used up and the above will output ‘1 a 2 b 3 a 4 b’.

Either or both inputs may be a scalar, they will be treated as an array of length
1 with the scalar as the only element. If either array is empty, the other array is
output with no extra elements inserted.

Currently the following code will output ‘a b’ and ‘1’ as two separate elements,
which can be unexpected. The second print provides a workaround which should
continue to work if this is changed.

a=(a b); b=(1 2); print -1 "${a:"b}"; print -1 "${${a: b}}"

${name: offset}

${name: offset: length}
This syntax gives effects similar to parameter subscripting in the form
$name [start,end], but is compatible with other shells; note that both offset and
length are interpreted differently from the components of a subscript.

If offset is non-negative, then if the variable name is a scalar substitute the contents
starting offset characters from the first character of the string, and if name is an
array substitute elements starting offset elements from the first element. If length
is given, substitute that many characters or elements, otherwise the entire rest of
the scalar or array.

A positive offset is always treated as the offset of a character or element in name
from the first character or element of the array (this is different from native zsh
subscript notation). Hence 0 refers to the first character or element regardless of
the setting of the option KSH_ARRAYS.

A negative offset counts backwards from the end of the scalar or array, so that -1
corresponds to the last character or element, and so on.

When positive, length counts from the offset position toward the end of the scalar or
array. When negative, length counts back from the end. If this results in a position
smaller than offset, a diagnostic is printed and nothing is substituted.

The option MULTIBYTE is obeyed, i.e. the offset and length count multibyte charac-
ters where appropriate.

offset and length undergo the same set of shell substitutions as for scalar assignment;
in addition, they are then subject to arithmetic evaluation. Hence, for example

print ${foo:3%}

print ${foo: 1 + 2}

print ${foo:$((1 + 2))}
print ${foo:$(echo 1 + 2)}

all have the same effect, extracting the string starting at the fourth character of
$foo if the substitution would otherwise return a scalar, or the array starting at the
fourth element if $foo would return an array. Note that with the option KSH_ARRAYS
$foo always returns a scalar (regardless of the use of the offset syntax) and a form
such as ${foo[*]:3} is required to extract elements of an array named foo.

If offset is negative, the — may not appear immediately after the : as this indicates
the ${name:-word} form of substitution. Instead, a space may be inserted before
the -. Furthermore, neither offset nor length may begin with an alphabetic character
or & as these are used to indicate history-style modifiers. To substitute a value from
a variable, the recommended approach is to precede it with a $ as this signifies
the intention (parameter substitution can easily be rendered unreadable); however,

Chapter 14: Expansion 50

as arithmetic substitution is performed, the expression ${var: offs} does work,
retrieving the offset from $offs.

For further compatibility with other shells there is a special case for array offset
0. This usually accesses the first element of the array. However, if the substitution
refers to the positional parameter array, e.g. $@ or $*, then offset 0 instead refers
to $0, offset 1 refers to $1, and so on. In other words, the positional parameter
array is effectively extended by prepending $0. Hence ${*:0: 13} substitutes $0 and
${*:1:1} substitutes $1.

${name/pattern/repl}
${name//pattern/repl}
${name:/pattern/repl}

${#tspec}

${"spec}
${""spec}

Replace the longest possible match of pattern in the expansion of parameter name
by string repl. The first form replaces just the first occurrence, the second form all
occurrences, and the third form replaces only if pattern matches the entire string.
Both pattern and repl are subject to double-quoted substitution, so that expressions
like ${name/$opat/$npat} will work, but obey the usual rule that pattern characters
in $opat are not treated specially unless either the option GLOB_SUBST is set, or
$opat is instead substituted as ${~opat}.

The pattern may begin with a ‘#’, in which case the pattern must match at the
start of the string, or ‘%’, in which case it must match at the end of the string, or
‘# in which case the pattern must match the entire string. The repl may be an
empty string, in which case the final ‘/’ may also be omitted. To quote the final </’
in other cases it should be preceded by a single backslash; this is not necessary if
the ¢/” occurs inside a substituted parameter. Note also that the ‘#’, ‘%4’ and ‘#% are
not active if they occur inside a substituted parameter, even at the start.

If, after quoting rules apply, ${name} expands to an array, the replacements act on
each element individually. Note also the effect of the I and S parameter expansion
flags below; however, the flags M, R, B, E and N are not useful.

For example,

foo="twinkle twinkle little star" sub="txe" rep="spy"
print ${foo//${ " sub}/$rep}
print ${(S)foo//${ subl}/$rep}

Here, the ‘7 ensures that the text of $sub is treated as a pattern rather than a plain
string. In the first case, the longest match for t*e is substituted and the result is
‘spy star’, while in the second case, the shortest matches are taken and the result
is ‘spy spy lispy star’.

If spec is one of the above substitutions, substitute the length in characters of the
result instead of the result itself. If spec is an array expression, substitute the
number of elements of the result. This has the side-effect that joining is skipped
even in quoted forms, which may affect other sub-expressions in spec. Note that ‘~,
‘=""and ‘~’, below, must appear to the left of ‘#’ when these forms are combined.
If the option POSIX_IDENTIFIERS is not set, and spec is a simple name, then the
braces are optional; this is true even for special parameters so e.g. $#- and $#x* take
the length of the string $- and the array $* respectively. If POSIX_IDENTIFIERS is
set, then braces are required for the # to be treated in this fashion.

Turn on the RC_EXPAND_PARAM option for the evaluation of spec; if the ‘~’ is doubled,
turn it off. When this option is set, array expansions of the form foo${xx}bar, where
the parameter xx is set to (a b ¢), are substituted with ‘fooabar foobbar foocbar’

Chapter 14: Expansion 51

instead of the default ‘fooa b cbar’. Note that an empty array will therefore cause
all arguments to be removed.

Internally, each such expansion is converted into the equivalent list for brace expan-
sion. E.g., ${"var} becomes {$var[1],$var[2],...}, and is processed as described
in Section 14.6 [Brace Expansion], page 62, below: note, however, the expansion
happens immediately, with any explicit brace expansion happening later. If word
splitting is also in effect the $var [N] may themselves be split into different list
elements.

${=spec}

${==spec} Perform word splitting using the rules for SH_WORD_SPLIT during the evaluation of
spec, but regardless of whether the parameter appears in double quotes; if the ‘=’
is doubled, turn it off. This forces parameter expansions to be split into separate
words before substitution, using IFS as a delimiter. This is done by default in most
other shells.

Note that splitting is applied to word in the assignment forms of spec before the
assignment to name is performed. This affects the result of array assignments with
the A flag.

${ " spec}

${"~spec} Turn on the GLOB_SUBST option for the evaluation of spec; if the ‘~’ is doubled,
turn it off. When this option is set, the string resulting from the expansion will be
interpreted as a pattern anywhere that is possible, such as in filename expansion
and filename generation and pattern-matching contexts like the right hand side of
the ‘=" and ‘!=’ operators in conditions.

In nested substitutions, note that the effect of the ~ applies to the result of the
current level of substitution. A surrounding pattern operation on the result may
cancel it. Hence, for example, if the parameter foo is set to *, ${"foo//*/*.c}
is substituted by the pattern *.c, which may be expanded by filename generation,
but ${${"foo}//*/*.c} substitutes to the string *.c, which will not be further
expanded.

If a ${...} type parameter expression or a $(...) type command substitution is used in place of
name above, it is expanded first and the result is used as if it were the value of name. Thus it
is possible to perform nested operations: ${${foo#head}’taill} substitutes the value of $foo
with both ‘head’ and ‘tail’ deleted. The form with $(...) is often useful in combination with
the flags described next; see the examples below. Each name or nested ${...} in a parameter
expansion may also be followed by a subscript expression as described in Section 15.2 [Array
Parameters|, page 77.

Note that double quotes may appear around nested expressions, in which case only the part
inside is treated as quoted; for example, ${(£)"$(fo0) "} quotes the result of $(foo), but the
flag ‘(£)’ (see below) is applied using the rules for unquoted expansions. Note further that
quotes are themselves nested in this context; for example, in "${(@f) "$(foo) "}", there are two
sets of quotes, one surrounding the whole expression, the other (redundant) surrounding the
$(foo) as before.

14.3.1 Parameter Expansion Flags

If the opening brace is directly followed by an opening parenthesis, the string up to the matching
closing parenthesis will be taken as a list of flags. In cases where repeating a flag is meaningful,
the repetitions need not be consecutive; for example, ‘(q%q%q)’ means the same thing as the
more readable ‘(%%qqq)’. The following flags are supported:

Chapter 14: Expansion 52

h

Evaluate the resulting words as numeric expressions and interpret these as character
codes. Output the corresponding characters. Note that this form is entirely distinct
from use of the # without parentheses.

If the MULTIBYTE option is set and the number is greater than 127 (i.e. not an ASCII
character) it is treated as a Unicode character.

Expand all % escapes in the resulting words in the same way as in prompts
(see Chapter 13 [Prompt Expansion], page 35). If this flag is given twice, full
prompt expansion is done on the resulting words, depending on the setting of the
PROMPT_PERCENT, PROMPT_SUBST and PROMPT_BANG options.

In double quotes, array elements are put into separate words. E.g., ‘"${(@)foo}"’
is equivalent to ‘"${foo[@]}"’ and ‘"${(@)foo[1,2]}" is the same as ‘"$foo[1]"
"$foo[2]"’. This is distinct from field splitting by the £, s or z flags, which still
applies within each array element.

Convert the substitution into an array expression, even if it otherwise would
be scalar. This has lower precedence than subscripting, so one level of nested
expansion is required in order that subscripts apply to array elements. Thus
${${(A) name}[1]} yields the full value of name when name is scalar.

This assigns an array parameter with ‘${...=...}", ‘${...:=..} or ‘${...: :=...}". If this
flag is repeated (as in ‘AA’), assigns an associative array parameter. Assignment is
made before sorting or padding; if field splitting is active, the word part is split
before assignment. The name part may be a subscripted range for ordinary arrays;
when assigning an associative array, the word part must be converted to an array,
for example by using ‘${(AA)=name=...}’ to activate field splitting.

Surrounding context such as additional nesting or use of the value in a scalar as-
signment may cause the array to be joined back into a single string again.

Sort in array index order; when combined with ‘0’ sort in reverse array index order.
Note that ‘a’ is therefore equivalent to the default but ‘Oa’ is useful for obtaining
an array’s elements in reverse order.

Quote with backslashes only characters that are special to pattern matching. This is
useful when the contents of the variable are to be tested using GLOB_SUBST, including
the ${7...} switch.

Quoting using one of the q family of flags does not work for this purpose since quotes
are not stripped from non-pattern characters by GLOB_SUBST. In other words,

pattern=${(q)str}
[[$str = ${"pattern} 1]

works if $str is ‘a*b’ but not if it is ‘a b’, whereas

pattern=${(b)str}
[[$str = ${"pattern} 1]

is always true for any possible value of $str.

With ${#name}, count the total number of characters in an array, as if the elements
were concatenated with spaces between them. This is not a true join of the array,
so other expressions used with this flag may have an effect on the elements of the
array before it is counted.

Capitalize the resulting words. ‘Words’ in this case refers to sequences of alphanu-
meric characters separated by non-alphanumerics, not to words that result from
field splitting.

Chapter 14: Expansion 53

g:opts:

Assume the string or array elements contain directories and attempt to substitute
the leading part of these by names. The remainder of the path (the whole of it if
the leading part was not substituted) is then quoted so that the whole string can
be used as a shell argument. This is the reverse of ‘~’ substitution: see Section 14.7
[Filename Expansion|, page 63.

Perform single word shell expansions, namely parameter expansion, command sub-
stitution and arithmetic expansion, on the result. Such expansions can be nested
but too deep recursion may have unpredictable effects.

Split the result of the expansion at newlines. This is a shorthand for ‘ps:\n:’.

Join the words of arrays together using newline as a separator. This is a shorthand
for ‘pj:\n:".

Process escape sequences like the echo builtin when no options are given (g::).
With the o option, octal escapes don’t take a leading zero. With the c option,
sequences like ‘"X’ are also processed. With the e option, processes ‘\M-t’ and
similar sequences like the print builtin. With both of the o and e options, behaves
like the print builtin except that in none of these modes is ‘\c’ interpreted.

Sort case-insensitively. May be combined with ‘n’ or ‘0’.

If name refers to an associative array, substitute the keys (element names) rather
than the values of the elements. Used with subscripts (including ordinary arrays),
force indices or keys to be substituted even if the subscript form refers to val-
ues. However, this flag may not be combined with subscript ranges. With the
KSH_ARRAYS option a subscript ‘[*]’ or ‘[@]’ is needed to operate on the whole
array, as usual.

Convert all letters in the result to lower case.

Sort decimal integers numerically; if the first differing characters of two test strings
are not digits, sorting is lexical. ‘+” and ‘=’ are not treated specially; they are treated
as any other non-digit. Integers with more initial zeroes are sorted before those with
fewer or none. Hence the array ‘foo+24 fool f0002 foo2 foo3 f0020 f0023’ is
sorted into the order shown. May be combined with ‘i’ or ‘0’.

As n, but a leading minus sign indicates a negative decimal integer. A leading minus
sign not followed by an integer does not trigger numeric sorting. Note that ‘+’ signs
are not handled specially (this may change in the future).

Sort the resulting words in ascending order; if this appears on its own the sorting
is lexical and case-sensitive (unless the locale renders it case-insensitive). Sorting
in ascending order is the default for other forms of sorting, so this is ignored if
combined with ‘a’, ‘i’, ‘n’ or ‘-’.

Sort the resulting words in descending order; ‘0’ without ‘a’, ‘i’, ‘n’ or ‘=’ sorts in

reverse lexical order. May be combined with ‘a’, ‘i’, ‘n’ or ‘=’ to reverse the order
of sorting.

This forces the value of the parameter name to be interpreted as a further parameter
name, whose value will be used where appropriate. Note that flags set with one of
the typeset family of commands (in particular case transformations) are not applied
to the value of name used in this fashion.

If used with a nested parameter or command substitution, the result of that will be
taken as a parameter name in the same way. For example, if you have ‘foo=bar’
and ‘bar=baz’, the strings ${(P)foo}, ${(P)${foo}}, and ${(P)$(echo bar)} will
be expanded to ‘baz’.

Chapter 14: Expansion 54

Likewise, if the reference is itself nested, the expression with the flag is treated as if
it were directly replaced by the parameter name. It is an error if this nested substi-
tution produces an array with more than one word. For example, if ‘name=assoc’
where the parameter assoc is an associative array, then ‘${${(P)name}[elt]}’
refers to the element of the associative subscripted ‘elt’.

q Quote characters that are special to the shell in the resulting words with backslashes;
unprintable or invalid characters are quoted using the $>\NNN’ form, with separate
quotes for each octet.

If this flag is given twice, the resulting words are quoted in single quotes and if it is
given three times, the words are quoted in double quotes; in these forms no special
handling of unprintable or invalid characters is attempted. If the flag is given four
times, the words are quoted in single quotes preceded by a $. Note that in all three
of these forms quoting is done unconditionally, even if this does not change the way
the resulting string would be interpreted by the shell.

If a g- is given (only a single q may appear), a minimal form of single quoting is
used that only quotes the string if needed to protect special characters. Typically
this form gives the most readable output.

If a g+ is given, an extended form of minimal quoting is used that causes unprintable
characters to be rendered using $°...°. This quoting is similar to that used by the
output of values by the typeset family of commands.

Q Remove one level of quotes from the resulting words.

t Use a string describing the type of the parameter where the value of the parameter
would usually appear. This string consists of keywords separated by hyphens (‘-’).
The first keyword in the string describes the main type, it can be one of ‘scalar’,

‘array’, ‘integer’, ‘float’ or ‘association’. The other keywords describe the type
in more detail:

local for local parameters
left for left justified parameters

right_blanks
for right justified parameters with leading blanks

right_zeros
for right justified parameters with leading zeros

lower for parameters whose value is converted to all lower case when it is
expanded

upper for parameters whose value is converted to all upper case when it is
expanded

readonly for readonly parameters
tag for tagged parameters

tied for parameters tied to another parameter in the manner of PATH (colon-
separated list) and path (array), whether these are special parameters
or user-defined with ‘typeset -T’

export for exported parameters
unique for arrays which keep only the first occurrence of duplicated values

hide for parameters with the ‘hide’ flag

Chapter 14: Expansion 55

0

hideval for parameters with the ‘hideval’ flag
special for special parameters defined by the shell
Expand only the first occurrence of each unique word.
Convert all letters in the result to upper case.

Used with k, substitute (as two consecutive words) both the key and the value of
each associative array element. Used with subscripts, force values to be substituted
even if the subscript form refers to indices or keys.

Make any special characters in the resulting words visible.

With ${#name}, count words in arrays or strings; the s flag may be used to set a
word delimiter.

Similar to w with the difference that empty words between repeated delimiters are
also counted.

With this flag, parsing errors occurring with the Q, e and # flags or the pattern
matching forms such as ‘${name#pattern}’ are reported. Without the flag, errors
are silently ignored.

Split the result of the expansion into words using shell parsing to find the words, i.e.
taking into account any quoting in the value. Comments are not treated specially
but as ordinary strings, similar to interactive shells with the INTERACTIVE_COMMENTS
option unset (however, see the Z flag below for related options)

Note that this is done very late, even later than the ‘(s)’ flag. So to access single
words in the result use nested expansions as in ‘${${(z)foo}[2]}’. Likewise, to
remove the quotes in the resulting words use ‘${(Q) ${(z)foo}}".

Split the result of the expansion on null bytes. This is a shorthand for ‘ps:\0:".

The following flags (except p) are followed by one or more arguments as shown. Any character,
or the matching pairs ‘(...)", ‘{...}’, ‘[...]7, or ‘<...>’, may be used in place of a colon as delimiters,
but note that when a flag takes more than one argument, a matched pair of delimiters must
surround each argument.

I3

Recognize the same escape sequences as the print builtin in string arguments to
any of the flags described below that follow this argument.

Alternatively, with this option string arguments may be in the form $var in which
case the value of the variable is substituted. Note this form is strict; the string
argument does not undergo general parameter expansion.

For example,

sep=:

val=a:b:c

print ${(ps.$sep.)val}
splits the variable on a :.

Strings inserted into the expansion by any of the flags below are to be treated as
patterns. This applies to the string arguments of flags that follow ~ within the same
set of parentheses. Compare with ~ outside parentheses, which forces the entire
substituted string to be treated as a pattern. Hence, for example,

(["?" = ${Cj.|.)array} 1]

treats ‘|’ as a pattern and succeeds if and only if $array contains the string ‘7’ as
an element. The ~ may be repeated to toggle the behaviour; its effect only lasts to
the end of the parenthesised group.

Chapter 14: Expansion 56

j:string:

Join the words of arrays together using string as a separator. Note that this occurs
before field splitting by the s:string: flag or the SH_WORD_SPLIT option.

l:expr: :stringl : :string2:

Pad the resulting words on the left. Each word will be truncated if required and
placed in a field expr characters wide.

The arguments :stringl : and :string2: are optional; neither, the first, or both may
be given. Note that the same pairs of delimiters must be used for each of the three
arguments. The space to the left will be filled with stringl (concatenated as often
as needed) or spaces if stringl is not given. If both stringl and string2 are given,
string2 is inserted once directly to the left of each word, truncated if necessary,
before stringl is used to produce any remaining padding.

If either of stringl or string2 is present but empty, i.e. there are two delimiters
together at that point, the first character of $IFS is used instead.

If the MULTIBYTE option is in effect, the flag m may also be given, in which case
widths will be used for the calculation of padding; otherwise individual multibyte
characters are treated as occupying one unit of width.

If the MULTIBYTE option is not in effect, each byte in the string is treated as occupying
one unit of width.

Control characters are always assumed to be one unit wide; this allows the mecha-
nism to be used for generating repetitions of control characters.

Only useful together with one of the flags 1 or r or with the # length operator when
the MULTIBYTE option is in effect. Use the character width reported by the system
in calculating how much of the string it occupies or the overall length of the string.
Most printable characters have a width of one unit, however certain Asian character
sets and certain special effects use wider characters; combining characters have zero
width. Non-printable characters are arbitrarily counted as zero width; how they
would actually be displayed will vary.

If the m is repeated, the character either counts zero (if it has zero width), else
one. For printable character strings this has the effect of counting the number of
glyphs (visibly separate characters), except for the case where combining characters
themselves have non-zero width (true in certain alphabets).

r:expr: :stringl : :string2:

s:string:

As 1, but pad the words on the right and insert string2 immediately to the right of
the string to be padded.

Left and right padding may be used together. In this case the strategy is to apply
left padding to the first half width of each of the resulting words, and right padding
to the second half. If the string to be padded has odd width the extra padding is
applied on the left.

Force field splitting at the separator string. Note that a string of two or more
characters means that all of them must match in sequence; this differs from the
treatment of two or more characters in the IFS parameter. See also the = flag and
the SH_WORD_SPLIT option. An empty string may also be given in which case every
character will be a separate element.

For historical reasons, the usual behaviour that empty array elements are retained
inside double quotes is disabled for arrays generated by splitting; hence the following;:

line="one: :three"

print -1 "${(s.:.)line}"
produces two lines of output for one and three and elides the empty field. To
override this behaviour, supply the ‘(@)’ flag as well, i.e. "${(@s.:.)1line}".

Chapter 14: Expansion 57

Z:opts: As z but takes a combination of option letters between a following pair of delimiter
characters. With no options the effect is identical to z. The following options are
available:

(Z+c+) causes comments to be parsed as a string and retained; any field in
the resulting array beginning with an unquoted comment character is a
comment.

(Z+C+) causes comments to be parsed and removed. The rule for comments is

standard: anything between a word starting with the third character of
$HISTCHARS, default #, up to the next newline is a comment.

(Z+n+) causes unquoted newlines to be treated as ordinary whitespace, else
they are treated as if they are shell code delimiters and converted to
semicolons.

Options are combined within the same set of delimiters, e.g. (Z+Cn+).

:flags: The underscore () flag is reserved for future use. As of this revision of zsh, there
are no valid flags; anything following an underscore, other than an empty pair of
delimiters, is treated as an error, and the flag itself has no effect.

The following flags are meaningful with the ${...#...} or ${...%...} forms. The S, I, and * flags
may also be used with the ${.../...} forms.

S With # or ##, search for the match that starts closest to the start of the string (a
‘substring match’). Of all matches at a particular position, # selects the shortest
and ## the longest:

% str="aXbXc"
% echo ${(S)str#Xx*}
abXc
% echo ${(S)str##X*}
a
h
With % or %%, search for the match that starts closest to the end of the string:

% str="aXbXc"

% echo ${(S)striX*}

aXbc

% echo ${(S)str%%X*}

aXb

h
(Note that % and %% don’t search for the match that ends closest to the end of the
string, as one might expect.)

With substitution via ${.../...} or ${...//...}, specifies non-greedy matching, i.e.
that the shortest instead of the longest match should be replaced:

% str="abab"

% echo ${str/*b/_}

% echo ${(S)str/+b/_}
_ab

%

I:expr: Search the exprth match (where expr evaluates to a number). This only applies
when searching for substrings, either with the S flag, or with ${.../...} (only the

Chapter 14: Expansion 58

exprth match is substituted) or ${...//...} (all matches from the exprth on are
substituted). The default is to take the first match.

The exprth match is counted such that there is either one or zero matches from each
starting position in the string, although for global substitution matches overlapping
previous replacements are ignored. With the ${...%...} and ${...%%...} forms, the
starting position for the match moves backwards from the end as the index increases,
while with the other forms it moves forward from the start.

Hence with the string
which switch is the right switch for Ipswich?

substitutions of the form ${(SI:N:)string#w*ch} as N increases from 1 will match
and remove ‘which’, ‘witch’, ‘witch’ and ‘wich’; the form using ‘##’ will match
and remove ‘which switch is the right switch for Ipswich’, ‘witch is the
right switch for Ipswich’, ‘witch for Ipswich’and ‘wich’. The form using ‘%’
will remove the same matches as for ‘#’, but in reverse order, and the form using
‘%% will remove the same matches as for ‘##’ in reverse order.

* Enable EXTENDED_GLOB for substitution via ${.../...} or ${...//...}. Note that ‘*x’
does not disable extendedglob.

Include the index of the beginning of the match in the result.

E Include the index one character past the end of the match in the result (note this is
inconsistent with other uses of parameter index).

Include the matched portion in the result.
Include the length of the match in the result.
Include the unmatched portion in the result (the Rest).

14.3.2 Rules

Here is a summary of the rules for substitution; this assumes that braces are present around
the substitution, i.e. ${...}. Some particular examples are given below. Note that the Zsh
Development Group accepts no responsibility for any brain damage which may occur during the
reading of the following rules.

1. Nested substitution

If multiple nested ${...} forms are present, substitution is performed from the inside
outwards. At each level, the substitution takes account of whether the current value
is a scalar or an array, whether the whole substitution is in double quotes, and what
flags are supplied to the current level of substitution, just as if the nested substitution
were the outermost. The flags are not propagated up to enclosing substitutions; the
nested substitution will return either a scalar or an array as determined by the flags,
possibly adjusted for quoting. All the following steps take place where applicable
at all levels of substitution.

Note that, unless the ‘(P)’ flag is present, the flags and any subscripts apply di-
rectly to the value of the nested substitution; for example, the expansion ${${foo}}
behaves exactly the same as ${foo}. When the ‘(P)’ flag is present in a nested sub-
stitution, the other substitution rules are applied to the value before it is interpreted
as a name, so ${${(P)foo}} may differ from ${(P)foo}.

At each nested level of substitution, the substituted words undergo all forms of
single-word substitution (i.e. not filename generation), including command substi-
tution, arithmetic expansion and filename expansion (i.e. leading ~ and =). Thus,
for example, ${${:-=cat}:h} expands to the directory where the cat program re-
sides. (Explanation: the internal substitution has no parameter but a default value

Chapter 14: Expansion 59

=cat, which is expanded by filename expansion to a full path; the outer substitution
then applies the modifier :h and takes the directory part of the path.)

2. Internal parameter flags
Any parameter flags set by one of the typeset family of commands, in particular
the -L, -R, -Z, —u and -1 options for padding and capitalization, are applied directly
to the parameter value. Note these flags are options to the command, e.g. ‘typeset
-Z’; they are not the same as the flags used within parameter substitutions.

At the outermost level of substitution, the ‘(P)’ flag (rule 4.) ignores these transfor-
mations and uses the unmodified value of the parameter as the name to be replaced.
This is usually the desired behavior because padding may make the value syntacti-
cally illegal as a parameter name, but if capitalization changes are desired, use the
${${(P)foo}} form (rule 25.).

3. Parameter subscripting

If the value is a raw parameter reference with a subscript, such as ${var[3]}, the
effect of subscripting is applied directly to the parameter. Subscripts are evaluated
left to right; subsequent subscripts apply to the scalar or array value yielded by the
previous subscript. Thus if var is an array, ${var[1] [2]} is the second character of
the first word, but ${var[2,4] [2]} is the entire third word (the second word of the
range of words two through four of the original array). Any number of subscripts
may appear. Flags such as ‘(k)’ and ‘(v)’ which alter the result of subscripting are
applied.

4. Parameter name replacement
At the outermost level of nesting only, the ‘(P)’ flag is applied. This treats the value
so far as a parameter name (which may include a subscript expression) and replaces
that with the corresponding value. This replacement occurs later if the ‘(P)’ flag
appears in a nested substitution.

If the value so far names a parameter that has internal flags (rule 2.), those internal
flags are applied to the new value after replacement.

5. Double-quoted joining
If the value after this process is an array, and the substitution appears in double
quotes, and neither an ‘(@)’ flag nor a ‘#’ length operator is present at the current
level, then words of the value are joined with the first character of the parameter
$1IFS, by default a space, between each word (single word arrays are not modified).
If the ‘(j)’ flag is present, that is used for joining instead of $IFS.

6. Nested subscripting
Any remaining subscripts (i.e. of a nested substitution) are evaluated at this point,
based on whether the value is an array or a scalar. As with 3., multiple subscripts
can appear. Note that ${foo[2,4] [2]} is thus equivalent to ${${foo[2,4]1}[2]}
and also to "${${(@)foo[2,41}[2]1}" (the nested substitution returns an array in
both cases), but not to "${${foo[2,41}[2]1}" (the nested substitution returns a
scalar because of the quotes).

7. Modifiers
Any modifiers, as specified by a trailing ‘#’, ‘%’, ‘/’ (possibly doubled) or by a set of
modifiers of the form ‘:..." (see Section 14.1.4 [Modifiers|, page 43, in Section 14.1

[History Expansion], page 41), are applied to the words of the value at this level.

8. Character evaluation
Any ‘(#)’ flag is applied, evaluating the result so far numerically as a character.

9. Length Any initial ‘#’ modifier, i.e. in the form ${#var}, is used to evaluate the length of
the expression so far.

Chapter 14: Expansion 60

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Forced joining
If the <(j)’ flag is present, or no ‘(j)’ flag is present but the string is to be split as
given by rule 11., and joining did not take place at rule 5., any words in the value
are joined together using the given string or the first character of $IFS if none. Note
that the ‘(F)’ flag implicitly supplies a string for joining in this manner.

Simple word splitting
If one of the ‘(s)’ or ‘(£)’ flags are present, or the ‘=’ specifier was present (e.g.
${=var}), the word is split on occurrences of the specified string, or (for = with
neither of the two flags present) any of the characters in $IFS.

If no ‘(s)’, ‘(£)’ or ‘=" was given, but the word is not quoted and the option
SH_WORD_SPLIT is set, the word is split on occurrences of any of the characters in
$IFS. Note this step, too, takes place at all levels of a nested substitution.

Case modification
Any case modification from one of the flags ‘(L)’, ‘(U)’ or ‘(C)’ is applied.

Escape sequence replacement
First any replacements from the ‘(g)’ flag are performed, then any prompt-style
formatting from the (%)’ family of flags is applied.

Quote application
Any quoting or unquoting using ‘(q)’ and ‘(Q)’ and related flags is applied.

Directory naming
Any directory name substitution using ‘(D)’ flag is applied.

Visibility enhancement
Any modifications to make characters visible using the ‘(V)’ flag are applied.

Lexical word splitting
If the ’(z)’ flag or one of the forms of the *(Z)’ flag is present, the word is split as
if it were a shell command line, so that quotation marks and other metacharacters
are used to decide what constitutes a word. Note this form of splitting is entirely
distinct from that described by rule 11.: it does not use $IFS, and does not cause
forced joining.

Uniqueness
If the result is an array and the ‘(u)’ flag was present, duplicate elements are
removed from the array.

Ordering
If the result is still an array and one of the ‘(o) or *(0)’ flags was present, the array
is reordered.

RC_EXPAND_PARAM
At this point the decision is made whether any resulting array elements are to
be combined element by element with surrounding text, as given by either the
RC_EXPAND_PARAM option or the ‘~’ flag.

Re-evaluation
Any ‘(e)’ flag is applied to the value, forcing it to be re-examined for new parameter
substitutions, but also for command and arithmetic substitutions.

Padding
Any padding of the value by the ‘(1.fill.)’ or ‘(r.fill.)’ flags is applied.

Semantic joining
In contexts where expansion semantics requires a single word to result, all words
are rejoined with the first character of IFS between. So in ‘${(P)${(f)1lines}}’

Chapter 14: Expansion 61

the value of ${1ines} is split at newlines, but then must be joined again before the
‘(P)’ flag can be applied.

If a single word is not required, this rule is skipped.

24. Empty argument remowval
If the substitution does not appear in double quotes, any resulting zero-length ar-
gument, whether from a scalar or an element of an array, is elided from the list of
arguments inserted into the command line.

Strictly speaking, the removal happens later as the same happens with other forms
of substitution; the point to note here is simply that it occurs after any of the above
parameter operations.

25. Nested parameter name replacement
If the ‘(P)’ flag is present and rule 4. has not applied, the value so far is treated
as a parameter name (which may include a subscript expression) and replaced with
the corresponding value, with internal flags (rule 2.) applied to the new value.

14.3.3 Examples

The flag £ is useful to split a double-quoted substitution line by line. For example,
${(£)"$(<file) "} substitutes the contents of file divided so that each line is an element of
the resulting array. Compare this with the effect of $(<file) alone, which divides the file up
by words, or the same inside double quotes, which makes the entire content of the file a single
string.

The following illustrates the rules for nested parameter expansions. Suppose that $foo contains
the array (bar baz):

"${(@) ${foo[1]1}"
This produces the result b. First, the inner substitution "${foo}", which has no
array (@) flag, produces a single word result "bar baz". The outer substitution
"${(@)...[1]1}" detects that this is a scalar, so that (despite the ‘(@)’ flag) the
subscript picks the first character.

"${${(@ foo}[1]}"

This produces the result ‘bar’. In this case, the inner substitution "${(@)foo}" pro-
duces the array ‘(bar baz)’. The outer substitution "${...[1]1}" detects that this
is an array and picks the first word. This is similar to the simple case "${foo[1]}".

As an example of the rules for word splitting and joining, suppose $foo contains the array ‘(ax1
bx1)’. Then

${(s/x/)foo}

produces the words ‘a’, ‘1 b’ and ‘1’.

${(j/x/s/x/)foo}

produces ‘a’, ‘1’, ‘b’ and ‘1’.

${(s/x/)foolh1*}
produces ‘a’ and ‘ b’ (note the extra space). As substitution occurs before either
joining or splitting, the operation first generates the modified array (ax bx), which
is joined to give "ax bx", and then split to give ‘a’, * b’ and “’. The final empty
string will then be elided, as it is not in double quotes.

Chapter 14: Expansion 62

14.4 Command Substitution

A command enclosed in parentheses preceded by a dollar sign, like ‘$(...)", or quoted with grave
accents, like ‘¢...¢", is replaced with its standard output, with any trailing newlines deleted. If
the substitution is not enclosed in double quotes, the output is broken into words using the IFS
parameter.

The substitution ‘$(cat foo)’ may be replaced by the faster ‘¢ (<foo)’. In this case foo under-
goes single word shell expansions (parameter expansion, command substitution and arithmetic
expansion), but not filename generation.

If the option GLOB_SUBST is set, the result of any unquoted command substitution, including
the special form just mentioned, is eligible for filename generation.

14.5 Arithmetic Expansion

A string of the form ‘$[exp]’ or ‘$((exp))’ is substituted with the value of the arithmetic
expression exp. exp is subjected to parameter expansion, command substitution and arithmetic
expansion before it is evaluated. See Chapter 11 [Arithmetic Evaluation], page 29.

14.6 Brace Expansion

A string of the form ‘foo{xx,yy,zz}bar’ is expanded to the individual words ‘fooxxbar’, ‘fooyy-
bar’ and ‘foozzbar’. Left-to-right order is preserved. This construct may be nested. Commas
may be quoted in order to include them literally in a word.

An expression of the form ‘{nl..n2}’, where nl and n2 are integers, is expanded to every
number between nl and n2 inclusive. If either number begins with a zero, all the resulting
numbers will be padded with leading zeroes to that minimum width, but for negative numbers
the - character is also included in the width. If the numbers are in decreasing order the resulting
sequence will also be in decreasing order.

An expression of the form ‘{nl..n2..n3}, where nl, n2, and n3 are integers, is expanded as
above, but only every n3th number starting from nl is output. If n3 is negative the numbers
are output in reverse order, this is slightly different from simply swapping nl and n2 in the case
that the step n3 doesn’t evenly divide the range. Zero padding can be specified in any of the
three numbers, specifying it in the third can be useful to pad for example ‘{-99..100..01}’
which is not possible to specify by putting a 0 on either of the first two numbers (i.e. pad to
two characters).

An expression of the form ‘{cl..c2}’, where cl and ¢2 are single characters (which may be
multibyte characters), is expanded to every character in the range from cl to ¢2 in whatever
character sequence is used internally. For characters with code points below 128 this is US
ASCII (this is the only case most users will need). If any intervening character is not printable,
appropriate quotation is used to render it printable. If the character sequence is reversed, the
output is in reverse order, e.g. ‘{d..a}’ is substituted as ‘d c b a’.

If a brace expression matches none of the above forms, it is left unchanged, unless the option
BRACE_CCL (an abbreviation for ‘brace character class’) is set. In that case, it is expanded to a
list of the individual characters between the braces sorted into the order of the characters in the
ASCII character set (multibyte characters are not currently handled). The syntax is similar to
a [...] expression in filename generation: ‘-’ is treated specially to denote a range of characters,
but ‘°” or ‘!’ as the first character is treated normally. For example, ‘{abcdef0-9}’ expands to
16 words0 1 23456789 abcdef.

Note that brace expansion is not part of filename generation (globbing); an expression such as
x/{foo,bar} is split into two separate words */foo and */bar before filename generation takes
place. In particular, note that this is liable to produce a ‘no match’ error if either of the two

Chapter 14: Expansion 63

expressions does not match; this is to be contrasted with */(foo|bar), which is treated as a
single pattern but otherwise has similar effects.

To combine brace expansion with array expansion, see the ${"spec} form described in
Section 14.3 [Parameter Expansion], page 47, above.

14.7 Filename Expansion

Each word is checked to see if it begins with an unquoted ‘. If it does, then the word up to
a ‘/’, or the end of the word if there is no ‘/’, is checked to see if it can be substituted in one
of the ways described here. If so, then the ‘~’ and the checked portion are replaced with the
appropriate substitute value.

A 7 by itself is replaced by the value of $HOME. A ‘=’ followed by a ‘+’ or a ‘-’ is replaced by
current or previous working directory, respectively.

A ¢~ followed by a number is replaced by the directory at that position in the directory stack.
‘0’ is equivalent to ‘“+’, and ‘~1’ is the top of the stack. ‘~+’ followed by a number is replaced by
the directory at that position in the directory stack. ‘*+0’ is equivalent to ‘“+’, and ‘“+1’ is the

top of the stack. ‘-’ followed by a number is replaced by the directory that many positions from
the bottom of the stack. ‘-0’ is the bottom of the stack. The PUSHD_MINUS option exchanges
the effects of ‘“+” and ‘“-’ where they are followed by a number.

14.7.1 Dynamic named directories

If the function zsh_directory_name exists, or the shell variable
zsh_directory_name_functions exists and contains an array of function names,
then the functions are used to implement dynamic directory naming. The functions are tried
in order until one returns status zero, so it is important that functions test whether they can
handle the case in question and return an appropriate status.

A 7’ followed by a string namstr in unquoted square brackets is treated specially as a dynamic
directory name. Note that the first unquoted closing square bracket always terminates namstr.
The shell function is passed two arguments: the string n (for name) and namstr. It should either
set the array reply to a single element which is the directory corresponding to the name and
return status zero (executing an assignment as the last statement is usually sufficient), or it
should return status non-zero. In the former case the element of reply is used as the directory;
in the latter case the substitution is deemed to have failed. If all functions fail and the option
NOMATCH is set, an error results.

The functions defined as above are also used to see if a directory can be turned into a name, for
example when printing the directory stack or when expanding %~ in prompts. In this case each
function is passed two arguments: the string d (for directory) and the candidate for dynamic
naming. The function should either return non-zero status, if the directory cannot be named by
the function, or it should set the array reply to consist of two elements: the first is the dynamic
name for the directory (as would appear within ‘~[...]1"), and the second is the prefix length of
the directory to be replaced. For example, if the trial directory is /home/myname/src/zsh and
the dynamic name for /home/myname/src (which has 16 characters) is s, then the function sets

reply=(s 16)

The directory name so returned is compared with possible static names for parts of the directory
path, as described below; it is used if the prefix length matched (16 in the example) is longer
than that matched by any static name.

It is not a requirement that a function implements both n and d calls; for example, it might be
appropriate for certain dynamic forms of expansion not to be contracted to names. In that case
any call with the first argument d should cause a non-zero status to be returned.

Chapter 14: Expansion 64

The completion system calls ‘zsh_directory_name c’ followed by equivalent calls to elements
of the array zsh_directory_name_functions, if it exists, in order to complete dynamic names
for directories. The code for this should be as for any other completion function as described in
Chapter 20 [Completion System]|, page 215.

As a working example, here is a function that expands any dynamic names beginning with the
string p: to directories below /home/pws/perforce. In this simple case a static name for the
directory would be just as effective.

zsh_directory_name() {
emulate -L zsh
setopt extendedglob
local -a match mbegin mend
if [[$1 =4]]; then
turn the directory into a name
if [[$2 = (#b) (/home/pws/perforce/) (["/1##)* 1]; then
typeset -ga reply
reply=(p:$match[2] $((${#match[1]} + ${#match[2]})))
else
return 1
fi
elif [[$1 =n 1]; then
turn the name into a directory
[[$2 '= (#b)p:(?7%) 1] && return 1
typeset -ga reply
reply=(/home/pws/perforce/$match[1])
elif [[$1 = c 1]; then
complete names
local expl
local -a dirs
dirs=(/home/pws/perforce/*(/:t))
dirs=(p:${"dirs})
_wanted dynamic-dirs expl ’dynamic directory’ compadd -S\] -a dirs
return
else
return 1
fi
return O

}

14.7.2 Static named directories

A ¢~ followed by anything not already covered consisting of any number of alphanumeric char-
acters or underscore (‘_’), hyphen (‘-’), or dot (‘.’) is looked up as a named directory, and
replaced by the value of that named directory if found. Named directories are typically home
directories for users on the system. They may also be defined if the text after the ‘~’ is the
name of a string shell parameter whose value begins with a ‘/’. Note that trailing slashes will
be removed from the path to the directory (though the original parameter is not modified).

It is also possible to define directory names using the -d option to the hash builtin.

When the shell prints a path (e.g. when expanding %~ in prompts or when printing the directory
stack), the path is checked to see if it has a named directory as its prefix. If so, then the prefix
portion is replaced with a ‘=’ followed by the name of the directory. The shorter of the two ways
of referring to the directory is used, i.e. either the directory name or the full path; the name is

Chapter 14: Expansion 65

used if they are the same length. The parameters $PWD and $0LDPWD are never abbreviated in
this fashion.

14.7.3 ‘=’ expansion

If a word begins with an unquoted ‘=’ and the EQUALS option is set, the remainder of the word
is taken as the name of a command. If a command exists by that name, the word is replaced by
the full pathname of the command.

14.7.4 Notes

Filename expansion is performed on the right hand side of a parameter assignment, including
those appearing after commands of the typeset family. In this case, the right hand side will
be treated as a colon-separated list in the manner of the PATH parameter, so that a *~” or an ‘=’
following a ‘:’ is eligible for expansion. All such behaviour can be disabled by quoting the ‘~’,

the ‘=’ or the whole expression (but not simply the colon); the EQUALS option is also respected.

If the option MAGIC_EQUAL_SUBST is set, any unquoted shell argument in the form ‘identi-
fier=expression’ becomes eligible for file expansion as described in the previous paragraph. Quot-
ing the first ‘=" also inhibits this.

14.8 Filename Generation

If a word contains an unquoted instance of one of the characters ‘*’, ‘C, ‘|’, <, ‘[’, or ‘7,
it is regarded as a pattern for filename generation, unless the GLOB option is unset. If the
EXTENDED_GLOB option is set, the ‘°” and ‘#’ characters also denote a pattern; otherwise they
are not treated specially by the shell.

The word is replaced with a list of sorted filenames that match the pattern. If no matching
pattern is found, the shell gives an error message, unless the NULL_GLOB option is set, in which
case the word is deleted; or unless the NOMATCH option is unset, in which case the word is left
unchanged.

In filename generation, the character ‘/’ must be matched explicitly; also, a .” must be matched
explicitly at the beginning of a pattern or after a ‘/’, unless the GLOB_DOTS option is set. No
filename generation pattern matches the files ‘.” or ‘. .’. In other instances of pattern matching,
the ¢/’ and ‘.’ are not treated specially.

14.8.1 Glob Operators

* Matches any string, including the null string.
? Matches any character.
[...] Matches any of the enclosed characters. Ranges of characters can be specified by

))

separating two characters by a * or ‘]’ may be matched by including it as the
first character in the list. There are also several named classes of characters, in the
form ‘[:name:]’ with the following meanings. The first set use the macros provided
by the operating system to test for the given character combinations, including any
modifications due to local language settings, see ctype(3):

[:alnum:]
The character is alphanumeric

[:alpha:]
The character is alphabetic

Chapter 14: Expansion

[:ascii:]

[:blank:]

[:cntrl:]

[:digit:]

[:graph:]

[:lower:]

[:print:]

[:punct:]

[:space:]

[:upper:]

[:xdigit:]

66

The character is 7-bit, i.e. is a single-byte character without the top bit
set.

The character is a blank character

The character is a control character

The character is a decimal digit

The character is a printable character other than whitespace

The character is a lowercase letter

The character is printable

The character is printable but neither alphanumeric nor whitespace

The character is whitespace

The character is an uppercase letter

The character is a hexadecimal digit

Another set of named classes is handled internally by the shell and is not sensitive
to the locale:

[:IDENT:]

[:IFS:]

The character is allowed to form part of a shell identifier, such as a
parameter name; this test respects the POSIX_IDENTIFIERS option

The character is used as an input field separator, i.e. is contained in
the IFS parameter

[:IFSSPACE:]

The character is an IFS white space character; see the documentation
for IFS in Section 15.6 [Parameters Used By The Shell], page 89.

[: INCOMPLETE:]

[:INVALID:

Matches a byte that starts an incomplete multibyte character. Note that
there may be a sequence of more than one bytes that taken together form
the prefix of a multibyte character. To test for a potentially incomplete
byte sequence, use the pattern ‘[[:INCOMPLETE:]]*’. This will never
match a sequence starting with a valid multibyte character.

]

Matches a byte that does not start a valid multibyte character. Note
this may be a continuation byte of an incomplete multibyte character
as any part of a multibyte string consisting of invalid and incomplete
multibyte characters is treated as single bytes.

Chapter 14: Expansion 67

..

x|y

X"y

x#

XH##

[:WORD:] The character is treated as part of a word; this test is sensitive to the
value of the WORDCHARS parameter

Note that the square brackets are additional to those enclosing the whole set of
characters, so to test for a single alphanumeric character you need ‘[[:alnum:]]’.
Named character sets can be used alongside other types, e.g. ‘[[:alpha:]10-9]".

Like [...], except that it matches any character which is not in the given set.

Matches any number in the range x to y, inclusive. Either of the numbers may be
omitted to make the range open-ended; hence ‘<->’ matches any number. To match
individual digits, the [...] form is more efficient.

Be careful when using other wildcards adjacent to patterns of this form; for example,
<0-9>* will actually match any number whatsoever at the start of the string, since
the ‘<0-9>’ will match the first digit, and the ‘*’ will match any others. This is a
trap for the unwary, but is in fact an inevitable consequence of the rule that the
longest possible match always succeeds. Expressions such as ‘<0-9>[~[:digit:]1]1#’
can be used instead.

Matches the enclosed pattern. This is used for grouping. If the KSH_GLOB option is
set, then a ‘@, “*’, ‘4’ ‘?” or ‘!’ immediately preceding the ‘(C is treated specially,
as detailed below. The option SH_GLOB prevents bare parentheses from being used
in this way, though the KSH_GLOB option is still available.

Note that grouping cannot extend over multiple directories: it is an error to have
a ‘/’ within a group (this only applies for patterns used in filename generation).
There is one exception: a group of the form (pat/)# appearing as a complete path
segment can match a sequence of directories. For example, foo/ (a*/)#bar matches
foo/bar, foo/any/bar, foo/any/anyother/bar, and so on.

Matches either x or y. This operator has lower precedence than any other. The
‘|’ character must be within parentheses, to avoid interpretation as a pipeline. The
alternatives are tried in order from left to right.

(Requires EXTENDED_GLOB to be set.) Matches anything except the pattern x. This
has a higher precedence than ‘/’, so ‘“foo/bar’ will search directories in ‘.’ except
‘./foo’ for a file named ‘bar’.

(Requires EXTENDED_GLOB to be set.) Match anything that matches the pattern
x but does not match y. This has lower precedence than any operator except
‘I, so ‘*/*~foo/bar’ will search for all files in all directories in ‘.’ and then ex-
clude ‘foo/bar’ if there was such a match. Multiple patterns can be excluded by
‘foo~bar~baz’. In the exclusion pattern (y), ‘/” and ‘.’ are not treated specially the
way they usually are in globbing.

(Requires EXTENDED_GLOB to be set.) Matches zero or more occurrences of the
pattern x. This operator has high precedence; ‘12#’ is equivalent to ‘1(2#)’, rather
than ‘(12)#’. It is an error for an unquoted ‘#’ to follow something which cannot
be repeated; this includes an empty string, a pattern already followed by ‘##’, or
parentheses when part of a KSH_GLOB pattern (for example, ‘! (foo)#’ is invalid and
must be replaced by ‘* (! (fo0))’).

(Requires EXTENDED_GLOB to be set.) Matches one or more occurrences of the pattern
x. This operator has high precedence; ‘12##’ is equivalent to ‘1 (2##)’, rather than
‘(12)##’. No more than two active ‘#’ characters may appear together. (Note the
potential clash with glob qualifiers in the form ‘1 (2##)’ which should therefore be
avoided.)

Chapter 14: Expansion 68

14.8.2 ksh-like Glob Operators
If the KSH_GLOB option is set, the effects of parentheses can be modified by a preceding ‘@’, ‘*’,

‘+7¢?” or ‘1I’. This character need not be unquoted to have special effects, but the ‘'’ must be.
@(...) Match the pattern in the parentheses. (Like ‘(...)".)
*(...) Match any number of occurrences. (Like ‘(...)#’, except that recursive directory

searching is not supported.)

+(...) Match at least one occurrence. (Like ‘(...)##’, except that recursive directory search-
ing is not supported.)

7(..) Match zero or one occurrence. (Like ‘(]...)".)

1) Match anything but the expression in parentheses. (Like ‘(~(...))".)

14.8.3 Precedence

The precedence of the operators given above is (highest) *7, ¢/, *’, |’ (lowest); the remaining
operators are simply treated from left to right as part of a string, with ‘#’ and ‘## applying
to the shortest possible preceding unit (i.e. a character, ‘?’, ‘[...]7, ‘<...>’, or a parenthesised
expression). As mentioned above, a ‘/’ used as a directory separator may not appear inside
parentheses, while a ‘|’ must do so; in patterns used in other contexts than filename generation
(for example, in case statements and tests within ‘[[...]]’), a ¢/’ is not special; and ‘/’ is also
not special after a ‘~’ appearing outside parentheses in a filename pattern.

14.8.4 Globbing Flags

There are various flags which affect any text to their right up to the end of the enclosing group
or to the end of the pattern; they require the EXTENDED_GLOB option. All take the form (#X)
where X may have one of the following forms:

i Case insensitive: upper or lower case characters in the pattern match upper or lower
case characters.

1 Lower case characters in the pattern match upper or lower case characters; upper
case characters in the pattern still only match upper case characters.

I Case sensitive: locally negates the effect of i or 1 from that point on.

b Activate backreferences for parenthesised groups in the pattern; this does not work
in filename generation. When a pattern with a set of active parentheses is matched,
the strings matched by the groups are stored in the array $match, the indices of the
beginning of the matched parentheses in the array $mbegin, and the indices of the
end in the array $mend, with the first element of each array corresponding to the
first parenthesised group, and so on. These arrays are not otherwise special to the
shell. The indices use the same convention as does parameter substitution, so that
elements of $mend and $mbegin may be used in subscripts; the KSH_ARRAYS option
is respected. Sets of globbing flags are not considered parenthesised groups; only
the first nine active parentheses can be referenced.

For example,

foo="a_string with_a_message"

if [[$foo = (alan)_(#b)(x) 1]; then
print ${foo[$mbegin[1],$mend[1]1]}

fi

prints ‘string_with_a_message’. Note that the first set of parentheses is before
the (#b) and does not create a backreference.

Chapter 14: Expansion 69

cN,M

Backreferences work with all forms of pattern matching other than filename gen-
eration, but note that when performing matches on an entire array, such as
${array#pattern}, or a global substitution, such as ${param//pat/repl}, only the
data for the last match remains available. In the case of global replacements this
may still be useful. See the example for the m flag below.

The numbering of backreferences strictly follows the order of the opening parentheses
from left to right in the pattern string, although sets of parentheses may be nested.
There are special rules for parentheses followed by ‘#’ or ‘##. Only the last match
of the parenthesis is remembered: for example, in ‘[[abab = (#b)([abl)# 11’,
only the final ‘b’ is stored in match[1]. Thus extra parentheses may be necessary
to match the complete segment: for example, use ‘X((ablcd)#)Y’ to match a whole
string of either ‘ab’ or ‘cd’ between ‘X’ and ‘Y’, using the value of $match[1] rather
than $match[2].

If the match fails none of the parameters is altered, so in some cases it may be
necessary to initialise them beforehand. If some of the backreferences fail to match
— which happens if they are in an alternate branch which fails to match, or if they
are followed by # and matched zero times — then the matched string is set to the
empty string, and the start and end indices are set to -1.

Pattern matching with backreferences is slightly slower than without.
Deactivate backreferences, negating the effect of the b flag from that point on.

The flag (#cN,M) can be used anywhere that the # or ## operators can be used
except in the expressions ‘(x/)# and ‘(*/)## in filename generation, where ‘/’
has special meaning; it cannot be combined with other globbing flags and a bad
pattern error occurs if it is misplaced. It is equivalent to the form {N,M} in
regular expressions. The previous character or group is required to match between
N and M times, inclusive. The form (#cN) requires exactly N matches; (#c, M) is
equivalent to specifying N as 0; (#cN,) specifies that there is no maximum limit
on the number of matches.

Set references to the match data for the entire string matched; this is similar to
backreferencing and does not work in filename generation. The flag must be in
effect at the end of the pattern, i.e. not local to a group. The parameters $MATCH,
$MBEGIN and $MEND will be set to the string matched and to the indices of the
beginning and end of the string, respectively. This is most useful in parameter
substitutions, as otherwise the string matched is obvious.

For example,

arr=(veldt jynx grimps waqf zho buck)

print ${arr//(#m) [aeioul /${(U)MATCH}}
forces all the matches (i.e. all vowels) into uppercase, printing ‘vEldt jynx grImps
wAgf zh0 bUck’.

Unlike backreferences, there is no speed penalty for using match references, other
than the extra substitutions required for the replacement strings in cases such as
the example shown.

Deactivate the m flag, hence no references to match data will be created.

Approximate matching: num errors are allowed in the string matched by the pattern.
The rules for this are described in the next subsection.

Unlike the other flags, these have only a local effect, and each must appear on its
own: ‘(#s)’ and ‘(#e)’ are the only valid forms. The ‘(#s)’ flag succeeds only
at the start of the test string, and the ‘(#e)’ flag succeeds only at the end of the

Chapter 14: Expansion 70

(~)

test string; they correspond to and ‘$’ in standard regular expressions. They
are useful for matching path segments in patterns other than those in filename
generation (where path segments are in any case treated separately). For example,
‘*((#s) /) test ((#e) | /) *’ matches a path segment ‘test’ in any of the following
strings: test, test/at/start, at/end/test, in/test/middle.

Another use is in parameter substitution; for example ‘${array/ (#s) A*Z (#e)}’ will
remove only elements of an array which match the complete pattern ‘A*Z’. There
are other ways of performing many operations of this type, however the combination
of the substitution operations ‘/’ and ‘//’ with the ‘(#s)’ and ‘(#e)’ flags provides
a single simple and memorable method.

Note that assertions of the form ‘(" (#s))’ also work, i.e. match anywhere except
at the start of the string, although this actually means ‘anything except a zero-
length portion at the start of the string’; you need to use ‘(""~ (#s))’ to match a
zero-length portion of the string not at the start.

q A ‘q’ and everything up to the closing parenthesis of the globbing flags are ignored
by the pattern matching code. This is intended to support the use of glob qualifiers,
see below. The result is that the pattern ‘(#b) (*).c(#q.)’ can be used both for
globbing and for matching against a string. In the former case, the ‘(#q.)’ will
be treated as a glob qualifier and the ‘(#b)’ will not be useful, while in the latter
case the ‘(#b)’ is useful for backreferences and the ‘(#q.)’ will be ignored. Note
that colon modifiers in the glob qualifiers are also not applied in ordinary pattern
matching.

u Respect the current locale in determining the presence of multibyte characters in a
pattern, provided the shell was compiled with MULTIBYTE_SUPPORT. This overrides
the MULTIBYTE option; the default behaviour is taken from the option. Compare U.
(Mnemonic: typically multibyte characters are from Unicode in the UTF-8 encoding,
although any extension of ASCII supported by the system library may be used.)

U All characters are considered to be a single byte long. The opposite of u. This
overrides the MULTIBYTE option.

For example, the test string fooxx can be matched by the pattern (#i)F00XX, but not by
(#1)FOOXX, (#i)FO0(#I)XX or ((#i)F0O0X)X. The string (#ia2)readme specifies case-insensitive
matching of readme with up to two errors.

When using the ksh syntax for grouping both KSH_GLOB and EXTENDED_GLOB must be set and
the left parenthesis should be preceded by @. Note also that the flags do not affect letters inside
[...] groups, in other words (#i) [a-z] still matches only lowercase letters. Finally, note that
when examining whole paths case-insensitively every directory must be searched for all files
which match, so that a pattern of the form (#i)/foo/bar/... is potentially slow.

14.8.5 Approximate Matching

When matching approximately, the shell keeps a count of the errors found, which cannot exceed
the number specified in the (#anum) flags. Four types of error are recognised:

1. Different characters, as in fooxbar and fooybar.

2. Transposition of characters, as in banana and abnana.

3. A character missing in the target string, as with the pattern road and target string
rod.

4. An extra character appearing in the target string, as with stove and strove.

Chapter 14: Expansion 71

Thus, the pattern (#a3)abcd matches dcba, with the errors occurring by using the first rule
twice and the second once, grouping the string as [d] [cb] [a] and [a] [bc] [d].

Non-literal parts of the pattern must match exactly, including characters in character ranges:
hence (#a1)77? matches strings of length four, by applying rule 4 to an empty part of the
pattern, but not strings of length two, since all the ? must match. Other characters which must
match exactly are initial dots in filenames (unless the GLOB_DOTS option is set), and all slashes
in filenames, so that a/bc is two errors from ab/c (the slash cannot be transposed with another
character). Similarly, errors are counted separately for non-contiguous strings in the pattern, so
that (ablcd)ef is two errors from aebf.

When using exclusion via the ~ operator, approximate matching is treated entirely separately
for the excluded part and must be activated separately. Thus, (#a1)README“READ_ME matches
READ.ME but not READ_ME, as the trailing READ_ME is matched without approximation. However,
(#a1)README~ (#a1)READ_ME does not match any pattern of the form READ?ME as all such forms
are now excluded.

Apart from exclusions, there is only one overall error count; however, the maximum er-
rors allowed may be altered locally, and this can be delimited by grouping. For example,
(#al)cat ((#a0)dog) fox allows one error in total, which may not occur in the dog section,
and the pattern (#al)cat(#a0)dog(#al)fox is equivalent. Note that the point at which an
error is first found is the crucial one for establishing whether to use approximation; for ex-
ample, (#al)abc(#a0)xyz will not match abcdxyz, because the error occurs at the ‘x’, where
approximation is turned off.

Entire path segments may be matched approximately, SO that
‘(#al)/foo/d/is/available/at/the/bar’ allows one error in any path segment.
This is much less efficient than without the (#al1), however, since every directory in the path
must be scanned for a possible approximate match. It is best to place the (#al) after any path
segments which are known to be correct.

14.8.6 Recursive Globbing

A pathname component of the form ‘(foo/)# matches a path consisting of zero or more direc-
tories matching the pattern foo.

As a shorthand, ‘**/’ is equivalent to ‘(*/)#’; note that this therefore matches files in the
current directory as well as subdirectories. Thus:

ls -1d -- (*/)#bar
or
ls -1d —- **x/bar

does a recursive directory search for files named ‘bar’ (potentially including the file ‘bar’ in the
current directory). This form does not follow symbolic links; the alternative form ‘*x**/’ does,
but is otherwise identical. Neither of these can be combined with other forms of globbing within
the same path segment; in that case, the ‘*’ operators revert to their usual effect.

Even shorter forms are available when the option GLOB_STAR_SHORT is set. In that case if no
/ immediately follows a ** or *** they are treated as if both a / plus a further * are present.
Hence:

setopt GLOBSTARSHORT
1s -1d —- **.c

is equivalent to

1ls -1d —- **/x.c

Chapter 14: Expansion 72

14.8.7 Glob Qualifiers

Patterns used for filename generation may end in a list of qualifiers enclosed in parentheses. The
qualifiers specify which filenames that otherwise match the given pattern will be inserted in the
argument list.

If the option BARE_GLOB_QUAL is set, then a trailing set of parentheses containing no ‘|’ or ‘(’
characters (or ‘=’ if it is special) is taken as a set of glob qualifiers. A glob subexpression that
would normally be taken as glob qualifiers, for example ‘("x)’, can be forced to be treated as
part of the glob pattern by doubling the parentheses, in this case producing ‘(("x))’.

If the option EXTENDED_GLOB is set, a different syntax for glob qualifiers is available, namely
‘(#gx)’ where x is any of the same glob qualifiers used in the other format. The qualifiers must
still appear at the end of the pattern. However, with this syntax multiple glob qualifiers may
be chained together. They are treated as a logical AND of the individual sets of flags. Also,
as the syntax is unambiguous, the expression will be treated as glob qualifiers just as long any
parentheses contained within it are balanced; appearance of ‘|’, ‘(" or ‘~’ does not negate the
effect. Note that qualifiers will be recognised in this form even if a bare glob qualifier exists at
the end of the pattern, for example ‘*(#gx*) (.)’ will recognise executable regular files if both
options are set; however, mixed syntax should probably be avoided for the sake of clarity. Note
that within conditions using the ‘[[’ form the presence of a parenthesised expression (#q...) at
the end of a string indicates that globbing should be performed; the expression may include glob
qualifiers, but it is also valid if it is simply (#q). This does not apply to the right hand side of
pattern match operators as the syntax already has special significance.

A qualifier may be any one of the following;:

/ directories

F ‘full’ (i.e. non-empty) directories. Note that the opposite sense ("F) expands to
empty directories and all non-directories. Use (/°F) for empty directories.
plain files

¢ symbolic links

= sockets

p named pipes (FIFOs)

* executable plain files (0100 or 0010 or 0001)

% device files (character or block special)

%o block special files

he character special files

T owner-readable files (0400)

W owner-writable files (0200)

X owner-executable files (0100)

A group-readable files (0040)

I group-writable files (0020)

E group-executable files (0010)

R world-readable files (0004)

W world-writable files (0002)

X world-executable files (0001)

Chapter 14: Expansion 73

fspec

estring
+cmd

setuid files (04000)
setgid files (02000)
files with the sticky bit (01000)

files with access rights matching spec. This spec may be a octal number optionally
preceded by a ‘=", a ‘“+’, or a ‘=’. If none of these characters is given, the behavior
is the same as for ‘=’. The octal number describes the mode bits to be expected,
if combined with a ‘=’ the value given must match the file-modes exactly, with a
‘+’ at least the bits in the given number must be set in the file-modes, and with
a ‘=’; the bits in the number must not be set. Giving a ‘?’ instead of a octal digit
anywhere in the number ensures that the corresponding bits in the file-modes are
not checked, this is only useful in combination with ‘=’.

If the qualifier ‘£’ is followed by any other character anything up to the next matching
character (‘[’, ‘{’, and ‘<’ match ‘1’, ‘}’, and ‘>’ respectively, any other character
matches itself) is taken as a list of comma-separated sub-specs. Each sub-spec may
be either an octal number as described above or a list of any of the characters ‘u’,

[Pl (0

‘g’, ‘o’, and ‘a’; followed by a ‘=", a ‘+’; or a ‘=’ followed by a list of any of the
characters ‘r’, ‘w’, ‘x’, ‘s’, and ‘t’, or an octal digit. The first list of characters
specify which access rights are to be checked. If a ‘u’ is given, those for the owner
of the file are used, if a ‘g’ is given, those of the group are checked, a ‘o’ means
to test those of other users, and the ‘a’ says to test all three groups. The ‘=", ‘+’,
and ‘-’ again says how the modes are to be checked and have the same meaning as
described for the first form above. The second list of characters finally says which
access rights are to be expected: ‘r’ for read access, ‘w’ for write access, ‘x’ for the
right to execute the file (or to search a directory), ‘s’ for the setuid and setgid bits,

and ‘t’ for the sticky bit.

Thus, ‘*(£707)’ gives the files for which the owner has read, write, and execute
permission, and for which other group members have no rights, independent of the
permissions for other users. The pattern ‘*(£-100)’ gives all files for which the
owner does not have execute permission, and ‘*(f:gu+w,o-rx:)’ gives the files for
which the owner and the other members of the group have at least write permission,
and for which other users don’t have read or execute permission.

The string will be executed as shell code. The filename will be included in the list if
and only if the code returns a zero status (usually the status of the last command).

In the first form, the first character after the ‘e’ will be used as a separator and
anything up to the next matching separator will be taken as the string; ‘[’, ‘{’,
and ‘<’ match ‘]’, ‘}’, and >’, respectively, while any other character matches itself.
Note that expansions must be quoted in the string to prevent them from being
expanded before globbing is done. string is then executed as shell code. The string
globqual is appended to the array zsh_eval_context the duration of execution.

During the execution of string the filename currently being tested is available in the
parameter REPLY; the parameter may be altered to a string to be inserted into the
list instead of the original filename. In addition, the parameter reply may be set
to an array or a string, which overrides the value of REPLY. If set to an array, the
latter is inserted into the command line word by word.

For example, suppose a directory contains a single file ‘lonely’. Then the expression
‘x(e:’reply=(${REPLY}{1,23})’:)’ will cause the words ‘lonelyl’ and ‘lonely2’
to be inserted into the command line. Note the quoting of string.

Chapter 14: Expansion 74

ddev
1[-1+]ct

uid

gid

The form +cmd has the same effect, but no delimiters appear around cmd. In-
stead, cmd is taken as the longest sequence of characters following the + that are
alphanumeric or underscore. Typically cmd will be the name of a shell function that
contains the appropriate test. For example,

nt() { [[$REPLY -nt $NTREF 1] }
NTREF=reffile
1ls -1d -- *(+nt)

lists all files in the directory that have been modified more recently than reffile.
files on the device dev

files having a link count less than ct (=), greater than ct (+), or equal to ct

files owned by the effective user ID

files owned by the effective group ID

files owned by user ID id if that is a number. Otherwise, id specifies a user name:
the character after the ‘u’ will be taken as a separator and the string between
it and the next matching separator will be taken as a user name. The starting
separators ‘[’, ‘{’, and ‘<’ match the final separators ‘1°, ‘}’, and ‘>’, respectively;
any other character matches itself. The selected files are those owned by this user.
For example, ‘u:foo:’ or ‘u[foo]’ selects files owned by user ‘foo’.

like uid but with group IDs or names

a[Mwhms|[-|+]n

files accessed exactly n days ago. Files accessed within the last n days are selected
using a negative value for n (-n). Files accessed more than n days ago are selected
by a positive n value (+n). Optional unit specifiers ‘M, ‘w’, ‘h’, ‘m’ or ‘s’ (e.g. ‘ahb’)
cause the check to be performed with months (of 30 days), weeks, hours, minutes
or seconds instead of days, respectively. An explicit ‘d’ for days is also allowed.

Any fractional part of the difference between the access time and the current part
in the appropriate units is ignored in the comparison. For instance, ‘echo *(ah-5)’
would echo files accessed within the last five hours, while ‘echo *(ah+5)’ would
echo files accessed at least six hours ago, as times strictly between five and six hours
are treated as five hours.

m[Mwhms][- | +]n

like the file access qualifier, except that it uses the file modification time.

c[Mwhms][-|+]n

Li+|-]n

like the file access qualifier, except that it uses the file inode change time.

files less than n bytes (=), more than n bytes (+), or exactly n bytes in length.

If this flag is directly followed by a size specifier ‘k’ (‘K’), ‘m’ (‘M’), or ‘p’ (‘P’) (e.g.
‘Lk-50’) the check is performed with kilobytes, megabytes, or blocks (of 512 bytes)
instead. (On some systems additional specifiers are available for gigabytes, ‘g’ or
‘G’, and terabytes, ‘t” or ‘T’.) If a size specifier is used a file is regarded as "exactly"
the size if the file size rounded up to the next unit is equal to the test size. Hence
‘*(Lm1)’ matches files from 1 byte up to 1 Megabyte inclusive. Note also that the
set of files "less than" the test size only includes files that would not match the
equality test; hence ‘*(Lm-1)’ only matches files of zero size.

negates all qualifiers following it

toggles between making the qualifiers work on symbolic links (the default) and the
files they point to, if any; any symbolic link for whose target the ‘stat’ system call
fails (whatever the cause of the failure) is treated as a file in its own right

Chapter 14: Expansion 75

Yn

ocC

Oc

[beg|, end]]

sets the MARK_DIRS option for the current pattern

appends a trailing qualifier mark to the filenames, analogous to the LIST_TYPES
option, for the current pattern (overrides M)

sets the NULL_GLOB option for the current pattern
sets the GLOB_DOTS option for the current pattern
sets the NUMERIC_GLOB_SORT option for the current pattern

enables short-circuit mode: the pattern will expand to at most n filenames. If more
than n matches exist, only the first n matches in directory traversal order will be
considered.

Implies oN when no oc qualifier is used.

specifies how the names of the files should be sorted. The following values of ¢ sort
in the following ways:

n By name.

By the size (length) of the files.

1 By number of links.

a By time of last access, youngest first.

m By time of last modification, youngest first.

c By time of last inode change, youngest first.

d By directories: files in subdirectories appear before those in the current

directory at each level of the search — this is best combined with other
criteria, for example ‘odon’ to sort on names for files within the same

directory.
N No sorting is performed.
estring
+cmd Sort by shell code (see below).

Note that the modifiers ~ and - are used, so ‘*("-oL)’ gives a list of all files sorted
by file size in descending order, following any symbolic links. Unless oN is used,
multiple order specifiers may occur to resolve ties.

The default sorting is n (by name) unless the Y glob qualifier is used, in which case
it is N (unsorted).

oe and o+ are special cases; they are each followed by shell code, delimited as for
the e glob qualifier and the + glob qualifier respectively (see above). The code is
executed for each matched file with the parameter REPLY set to the name of the file
on entry and globsort appended to zsh_eval_context. The code should modify
the parameter REPLY in some fashion. On return, the value of the parameter is used
instead of the file name as the string on which to sort. Unlike other sort operators,
oe and o+ may be repeated, but note that the maximum number of sort operators
of any kind that may appear in any glob expression is 12.

like ‘o’, but sorts in descending order; i.e. ‘*("oc)’ is the same as ‘*(0c)’ and
‘*(~0c)’ is the same as ‘*(oc)’; ‘0d’ puts files in the current directory before those
in subdirectories at each level of the search.

specifies which of the matched filenames should be included in the returned list.
The syntax is the same as for array subscripts. beg and the optional end may be

Chapter 14: Expansion 76

mathematical expressions. As in parameter subscripting they may be negative to
make them count from the last match backward. E.g.: ‘*(-0L[1,3])’ gives a list of
the names of the three largest files.

Pstring The string will be prepended to each glob match as a separate word. string is
delimited in the same way as arguments to the e glob qualifier described above. The
qualifier can be repeated; the words are prepended separately so that the resulting
command line contains the words in the same order they were given in the list of
glob qualifiers.

A typical use for this is to prepend an option before all occurrences of a file name;
for example, the pattern ‘*(P:-f:)’ produces the command line arguments ‘~f filel
-f file2 ...

If the modifier ~ is active, then string will be appended instead of prepended.
Prepending and appending is done independently so both can be used on the same
glob expression; for example by writing ‘*(P:foo:"P:bar:"P:baz:)’ which pro-
duces the command line arguments ‘foo baz filel bar ...’

More than one of these lists can be combined, separated by commas. The whole list matches if
at least one of the sublists matches (they are ‘or’ed, the qualifiers in the sublists are ‘and’ed).
Some qualifiers, however, affect all matches generated, independent of the sublist in which they
are given. These are the qualifiers ‘M’, ‘T’, ‘N’, ‘D’, ‘n’, ‘0’, ‘0’ and the subscripts given in brackets
(‘[...17).
If a “:” appears in a qualifier list, the remainder of the expression in parenthesis is interpreted as
a modifier (see Section 14.1.4 [Modifiers], page 43, in Section 14.1 [History Expansion], page 41).
Each modifier must be introduced by a separate ‘:’. Note also that the result after modification
does not have to be an existing file. The name of any existing file can be followed by a modifier
of the form ‘(:...)” even if no actual filename generation is performed, although note that the
presence of the parentheses causes the entire expression to be subjected to any global pattern
matching options such as NULL_GLOB. Thus:

1s -1d -- *(-/)
lists all directories and symbolic links that point to directories, and

ls -1d -- *(-0)
lists all broken symbolic links, and

1s -1d -- *(%W)
lists all world-writable device files in the current directory, and

ls -1d —— *(W,X)
lists all files in the current directory that are world-writable or world-executable, and

print -rCl /tmp/foo*(u0~@:t)
outputs the basename of all root-owned files beginning with the string ‘foo’ in /tmp, ignoring
symlinks, and

ls -1d -- *.*"(lex|parse).[ch]("D"11)
lists all files having a link count of one whose names contain a dot (but not those starting with a
dot, since GLOB_DOTS is explicitly switched off) except for lex.c, lex.h, parse.c and parse.h.

print -rCl bx*.pro(#q:s/pro/shmo/) (#q.:s/builtin/shmiltin/)

demonstrates how colon modifiers and other qualifiers may be chained together. The ordi-
nary qualifier ‘.’ is applied first, then the colon modifiers in order from left to right. So if
EXTENDED_GLOB is set and the base pattern matches the regular file builtin.pro, the shell will
print ‘shmiltin.shmo’.

Chapter 15: Parameters 7

15 Parameters

15.1 Description

A parameter has a name, a value, and a number of attributes. A name may be any sequence
of alphanumeric characters and underscores, or the single characters ‘x’, ‘@’, ‘#’, *?’, ‘=’ ‘§’, or
‘1’ A parameter whose name begins with an alphanumeric or underscore is also referred to as
a variable.

The attributes of a parameter determine the type of its value, often referred to as the parameter
type or variable type, and also control other processing that may be applied to the value when it
is referenced. The value type may be a scalar (a string, an integer, or a floating point number),
an array (indexed numerically), or an associative array (an unordered set of name-value pairs,
indexed by name, also referred to as a hash).

Named scalar parameters may have the exported, -x, attribute, to copy them into the process
environment, which is then passed from the shell to any new processes that it starts. Exported
parameters are called environment varitables. The shell also imports environment variables at
startup time and automatically marks the corresponding parameters as exported. Some envi-
ronment variables are not imported for reasons of security or because they would interfere with
the correct operation of other shell features.

Parameters may also be special, that is, they have a predetermined meaning to the shell. Special
parameters cannot have their type changed or their readonly attribute turned off, and if a special
parameter is unset, then later recreated, the special properties will be retained.

To declare the type of a parameter, or to assign a string or numeric value to a scalar parameter,
use the typeset builtin.

The value of a scalar parameter may also be assigned by writing:
name=value

In scalar assignment, value is expanded as a single string, in which the elements of arrays are
joined together; filename expansion is not performed unless the option GLOB_ASSIGN is set.

When the integer attribute, -1, or a floating point attribute, -E or -F, is set for name, the value
is subject to arithmetic evaluation. Furthermore, by replacing ‘=’ with ‘+=’, a parameter can
be incremented or appended to. See Section 15.2 [Array Parameters|, page 77, and Chapter 11
[Arithmetic Evaluation], page 29, for additional forms of assignment.

Note that assignment may implicitly change the attributes of a parameter. For example, assign-
ing a number to a variable in arithmetic evaluation may change its type to integer or float, and
with GLOB_ASSIGN assigning a pattern to a variable may change its type to an array.

To reference the value of a parameter, write ‘$name’ or ‘${name}’. See Section 14.3 [Parameter
Expansion], page 47, for complete details. That section also explains the effect of the difference
between scalar and array assignment on parameter expansion.

15.2 Array Parameters

To assign an array value, write one of:
set -A name value ...
name=(value ...)
name=([key]l=value ...)

If no parameter name exists, an ordinary array parameter is created. If the parameter name
exists and is a scalar, it is replaced by a new array.

Chapter 15: Parameters 78

In the third form, key is an expression that will be evaluated in arithmetic context (in its
simplest form, an integer) that gives the index of the element to be assigned with value. In this
form any elements not explicitly mentioned that come before the largest index to which a value
is assigned are assigned an empty string. The indices may be in any order. Note that this syntax
is strict: [and]= must not be quoted, and key may not consist of the unquoted string]=, but
is otherwise treated as a simple string. The enhanced forms of subscript expression that may
be used when directly subscripting a variable name, described in the section ‘Array Subscripts’
below, are not available.

The syntaxes with and without the explicit key may be mixed. An implicit key is deduced by
incrementing the index from the previously assigned element. Note that it is not treated as an
error if latter assignments in this form overwrite earlier assignments.

For example, assuming the option KSH_ARRAYS is not set, the following:
array=(one [3]=three four)

causes the array variable array to contain four elements one, an empty string, three and four,
in that order.

In the forms where only value is specified, full command line expansion is performed.

In the [key]l=value form, both key and value undergo all forms of expansion allowed for single
word shell expansions (this does not include filename generation); these are as performed by
the parameter expansion flag (e) as described in Section 14.3 [Parameter Expansion], page 47.
Nested parentheses may surround value and are included as part of the value, which is joined
into a plain string; this differs from ksh which allows the values themselves to be arrays. A
future version of zsh may support that. To cause the brackets to be interpreted as a character
class for filename generation, and therefore to treat the resulting list of files as a set of values,
quote the equal sign using any form of quoting. Example:

name=([a-z]’="%)

To append to an array without changing the existing values, use one of the following;:
name+=(value ...)
name+=([key]l=value ...)

In the second form key may specify an existing index as well as an index off the end of the old
array; any existing value is overwritten by value. Also, it is possible to use [key]+=value to
append to the existing value at that index.

Within the parentheses on the right hand side of either form of the assignment, newlines and
semicolons are treated the same as white space, separating individual values. Any consecutive
sequence of such characters has the same effect.

Ordinary array parameters may also be explicitly declared with:
typeset -a name

Associative arrays must be declared before assignment, by using:
typeset -A name

When name refers to an associative array, the list in an assignment is interpreted as alternating
keys and values:

set -A name key value ...
name=(key value ...)
name=([key]l=value ...)

Note that only one of the two syntaxes above may be used in any given assignment; the forms
may not be mixed. This is unlike the case of numerically indexed arrays.

Every key must have a value in this case. Note that this assigns to the entire array, deleting any

elements that do not appear in the list. The append syntax may also be used with an associative
array:

Chapter 15: Parameters 79

name+=(key value ...)
name+=([keyl=value ...)

This adds a new key/value pair if the key is not already present, and replaces the value for the
existing key if it is. In the second form it is also possible to use [key]+=value to append to the
existing value at that key. Expansion is performed identically to the corresponding forms for
normal arrays, as described above.

To create an empty array (including associative arrays), use one of:
set —A name

name=()

15.2.1 Array Subscripts

Individual elements of an array may be selected using a subscript. A subscript of the form ‘ [exp]’
selects the single element exp, where exp is an arithmetic expression which will be subject
to arithmetic expansion as if it were surrounded by ‘$((...))’. The elements are numbered
beginning with 1, unless the KSH_ARRAYS option is set in which case they are numbered from
ZETO.

Subscripts may be used inside braces used to delimit a parameter name, thus ‘${foo[2]} is
equivalent to ‘$foo[2]’. If the KSH_ARRAYS option is set, the braced form is the only one that
works, as bracketed expressions otherwise are not treated as subscripts.

If the KSH_ARRAYS option is not set, then by default accesses to an array element with a subscript
that evaluates to zero return an empty string, while an attempt to write such an element is
treated as an error. For backward compatibility the KSH_ZERO_SUBSCRIPT option can be set to
cause subscript values 0 and 1 to be equivalent; see the description of the option in Section 16.2
[Description of Options|, page 98.

The same subscripting syntax is used for associative arrays, except that no arithmetic expansion
is applied to exp. However, the parsing rules for arithmetic expressions still apply, which affects
the way that certain special characters must be protected from interpretation. See Subscript
Parsing below for details.

A subscript of the form ‘[*]” or ‘[@]’ evaluates to all elements of an array; there is no difference
between the two except when they appear within double quotes. ‘"$foo[*]"’ evaluates to
‘“"$fool[1] $foo[2] ..."’, whereas ‘"$foo[@]"’ evaluates to ‘"$foo[1]" "$foo[2]" For
associative arrays, ‘[*]’ or ‘[@]’ evaluate to all the values, in no particular order. Note that
this does not substitute the keys; see the documentation for the ‘k’ flag under Section 14.3
[Parameter Expansion], page 47, for complete details. When an array parameter is referenced
as ‘$name’ (with no subscript) it evaluates to ‘$name[*]’, unless the KSH_ARRAYS option is set
in which case it evaluates to ‘${name[0]}’ (for an associative array, this means the value of the
key ‘0’, which may not exist even if there are values for other keys).

A subscript of the form ‘[expl,exp2]’ selects all elements in the range expl to exp2, inclusive.
(Associative arrays are unordered, and so do not support ranges.) If one of the subscripts
evaluates to a negative number, say -n, then the nth element from the end of the array is used.
Thus ‘$foo[-3]’ is the third element from the end of the array foo, and ‘$foo[1,-1]’ is the
same as ‘$foo [*]’ .

Subscripting may also be performed on non-array values, in which case the subscripts specify a
substring to be extracted. For example, if FOO is set to ‘foobar’, then ‘echo $F00[2,5]’ prints
‘ooba’. Note that some forms of subscripting described below perform pattern matching, and in
that case the substring extends from the start of the match of the first subscript to the end of
the match of the second subscript. For example,

string="abcdefghijklm"
print ${stringl(r)d?, (r)h7]}

Chapter 15: Parameters 80

prints ‘defghi’. This is an obvious generalisation of the rule for single-character matches. For
a single subscript, only a single character is referenced (not the range of characters covered by
the match).

Note that in substring operations the second subscript is handled differently by the r and R
subscript flags: the former takes the shortest match as the length and the latter the longest
match. Hence in the former case a * at the end is redundant while in the latter case it matches
the whole remainder of the string. This does not affect the result of the single subscript case as
here the length of the match is irrelevant.

15.2.2 Array Element Assignment

A subscript may be used on the left side of an assignment like so:
name [exp] =value

In this form of assignment the element or range specified by exp is replaced by the expression
on the right side. An array (but not an associative array) may be created by assignment to a
range or element. Arrays do not nest, so assigning a parenthesized list of values to an element or
range changes the number of elements in the array, shifting the other elements to accommodate
the new values. (This is not supported for associative arrays.)

This syntax also works as an argument to the typeset command:
typeset "name [exp] "=value

The value may not be a parenthesized list in this case; only single-element assignments may be
made with typeset. Note that quotes are necessary in this case to prevent the brackets from
being interpreted as filename generation operators. The noglob precommand modifier could be
used instead.

To delete an element of an ordinary array, assign ‘()’ to that element. To delete an element of
an associative array, use the unset command:

unset "name [exp]"

15.2.3 Subscript Flags

If the opening bracket, or the comma in a range, in any subscript expression is directly followed
by an opening parenthesis, the string up to the matching closing one is considered to be a list
of flags, as in ‘name [(flags) exp]’.

The flags s, n and b take an argument; the delimiter is shown below as ‘:’, but any character, or
the matching pairs ‘(...)", ‘{...}’, ‘[...]’, or ‘<...>’, may be used, but note that ‘<...>’ can only be
used if the subscript is inside a double quoted expression or a parameter substitution enclosed
in braces as otherwise the expression is interpreted as a redirection.

The flags currently understood are:

W If the parameter subscripted is a scalar then this flag makes subscripting work
on words instead of characters. The default word separator is whitespace. When
combined with the i or I flag, the effect is to produce the index of the first character
of the first/last word which matches the given pattern; note that a failed match in
this case always yields 0.

s:string: This gives the string that separates words (for use with the w flag). The delimiter
character : is arbitrary; see above.

P Recognize the same escape sequences as the print builtin in the string argument of
a subsequent ‘s’ flag.

f If the parameter subscripted is a scalar then this flag makes subscripting work on
lines instead of characters, i.e. with elements separated by newlines. This is a
shorthand for ‘pws:\n:’.

Chapter 15: Parameters 81

n:expr:

Reverse subscripting: if this flag is given, the exp is taken as a pattern and the
result is the first matching array element, substring or word (if the parameter is an
array, if it is a scalar, or if it is a scalar and the ‘w’ flag is given, respectively). The
subscript used is the number of the matching element, so that pairs of subscripts
such as ‘$foo[(r)?7,3] and ‘$foo[(xr)?7, (r)f*]’ are possible if the parameter is
not an associative array. If the parameter is an associative array, only the value
part of each pair is compared to the pattern, and the result is that value.

If a search through an ordinary array failed, the search sets the subscript to one past
the end of the array, and hence ${array[(r)pattern]} will substitute the empty
string. Thus the success of a search can be tested by using the (i) flag, for example
(assuming the option KSH_ARRAYS is not in effect):

[[${array[(i)pattern]} -le ${#array} 1]
If KSH_ARRAYS is in effect, the -1e should be replaced by -1t.

Like ‘r’, but gives the last match. For associative arrays, gives all possible matches.
May be used for assigning to ordinary array elements, but not for assigning to
associative arrays. On failure, for normal arrays this has the effect of returning
the element corresponding to subscript 0; this is empty unless one of the options
KSH_ARRAYS or KSH_ZERO_SUBSCRIPT is in effect.

Note that in subscripts with both ‘r’ and ‘R’ pattern characters are active even
if they were substituted for a parameter (regardless of the setting of GLOB_SUBST
which controls this feature in normal pattern matching). The flag ‘e’ can be added
to inhibit pattern matching. As this flag does not inhibit other forms of substitution,
care is still required; using a parameter to hold the key has the desired effect:
key2=’original key’
print ${array[(Re)S$key2]}
Like ‘r’, but gives the index of the match instead; this may not be combined with a
second argument. On the left side of an assignment, behaves like ‘r’. For associative
arrays, the key part of each pair is compared to the pattern, and the first matching
key found is the result. On failure substitutes the length of the array plus one, as
discussed under the description of ‘r’, or the empty string for an associative array.

Note: Although ‘i’ may be applied to a scalar substitution to find the offset of a
substring, the results are likely to be misleading when searching within substitutions
that yield an empty string, or when searching for the empty substring.

Like ‘i’, but gives the index of the last match, or all possible matching keys in an
associative array. On failure substitutes 0, or the empty string for an associative
array. This flag is best when testing for values or keys that do not exist.

Note: If the option KSH_ARRAYS is in effect and no match is found, the result is
indistinguishable from the case when the first element of the array matches.

If used in a subscript on an associative array, this flag causes the keys to be in-
terpreted as patterns, and returns the value for the first key found where exp is
matched by the key. Note this could be any such key as no ordering of associative
arrays is defined. This flag does not work on the left side of an assignment to an
associative array element. If used on another type of parameter, this behaves like

‘r’.

On an associative array this is like ‘k’ but returns all values where exp is matched
by the keys. On other types of parameters this has the same effect as ‘R’.

If combined with ‘r’, ‘R’, ‘i’ or ‘I’, makes them give the nth or nth last match
(if expr evaluates to n). This flag is ignored when the array is associative. The
delimiter character : is arbitrary; see above.

Chapter 15: Parameters 82

b:expr: If combined with ‘r’, ‘R’, ‘i’ or ‘I’, makes them begin at the nth or nth last element,
word, or character (if expr evaluates to n). This flag is ignored when the array is
associative. The delimiter character : is arbitrary; see above.

e This flag causes any pattern matching that would be performed on the subscript to
use plain string matching instead. Hence ‘${array[(re)*]}’ matches only the array
element whose value is *. Note that other forms of substitution such as parameter
substitution are not inhibited.

This flag can also be used to force * or @ to be interpreted as a single key rather
than as a reference to all values. It may be used for either purpose on the left side
of an assignment.

See Parameter Expansion Flags (Section 14.3 [Parameter Expansion], page 47) for additional
ways to manipulate the results of array subscripting.

15.2.4 Subscript Parsing

This discussion applies mainly to associative array key strings and to patterns used for reverse
[

subscripting (the ‘r’, ‘R’, ‘i’, etc. flags), but it may also affect parameter substitutions that
appear as part of an arithmetic expression in an ordinary subscript.

To avoid subscript parsing limitations in assignments to associative array elements, use the
append syntax:

aa+=(’key with "xstrangex" characters’ ’value string’)

The basic rule to remember when writing a subscript expression is that all text between the
opening ‘[’ and the closing ‘1’ is interpreted as if it were in double quotes (Section 6.9 [Quoting],
page 17). However, unlike double quotes which normally cannot nest, subscript expressions may
appear inside double-quoted strings or inside other subscript expressions (or both!), so the rules
have two important differences.

The first difference is that brackets (‘[’ and ‘]’) must appear as balanced pairs in a subscript
expression unless they are preceded by a backslash (‘\’). Therefore, within a subscript expression
(and unlike true double-quoting) the sequence ‘\ [’ becomes ‘[’, and similarly ‘\]’ becomes ‘]’.
This applies even in cases where a backslash is not normally required; for example, the pattern
‘[~[1’ (to match any character other than an open bracket) should be written ‘["\[]’ in a
reverse-subscript pattern. However, note that ‘\["\[\]’ and even ‘\ [~ []’ mean the same thing,
because backslashes are always stripped when they appear before brackets!

The same rule applies to parentheses (‘C and ‘)’) and braces (‘{’ and ‘}’): they must appear
either in balanced pairs or preceded by a backslash, and backslashes that protect parentheses or
braces are removed during parsing. This is because parameter expansions may be surrounded
by balanced braces, and subscript flags are introduced by balanced parentheses.

The second difference is that a double-quote (‘"’) may appear as part of a subscript expression
without being preceded by a backslash, and therefore that the two characters ‘\"’ remain as
two characters in the subscript (in true double-quoting, ‘\"’ becomes ‘"’). However, because of
the standard shell quoting rules, any double-quotes that appear must occur in balanced pairs
unless preceded by a backslash. This makes it more difficult to write a subscript expression that
contains an odd number of double-quote characters, but the reason for this difference is so that
when a subscript expression appears inside true double-quotes, one can still write ‘\"’ (rather
than “\\\"") for ‘"’

To use an odd number of double quotes as a key in an assignment, use the typeset builtin and
an enclosing pair of double quotes; to refer to the value of that key, again use double quotes:

typeset -A aa
typeset "aalone\"two\"three\"quotes]"=QQQ
print "$aalone\"two\"three\"quotes]"

Chapter 15: Parameters 83

It is important to note that the quoting rules do not change when a parameter expansion with
a subscript is nested inside another subscript expression. That is, it is not necessary to use
additional backslashes within the inner subscript expression; they are removed only once, from
the innermost subscript outwards. Parameters are also expanded from the innermost subscript
first, as each expansion is encountered left to right in the outer expression.

A further complication arises from a way in which subscript parsing is not different from double
quote parsing. As in true double-quoting, the sequences ‘*’, and ‘\@ remain as two characters
when they appear in a subscript expression. To use a literal ‘*’ or ‘@’ as an associative array
key, the ‘e’ flag must be used:

typeset -A aa
aal[(e)*]=star
print $aal(e)*]

A last detail must be considered when reverse subscripting is performed. Parameters appearing
in the subscript expression are first expanded and then the complete expression is interpreted
as a pattern. This has two effects: first, parameters behave as if GLOB_SUBST were on (and it
cannot be turned off); second, backslashes are interpreted twice, once when parsing the array
subscript and again when parsing the pattern. In a reverse subscript, it’s necessary to use four
backslashes to cause a single backslash to match literally in the pattern. For complex patterns,
it is often easiest to assign the desired pattern to a parameter and then refer to that parameter
in the subscript, because then the backslashes, brackets, parentheses, etc., are seen only when
the complete expression is converted to a pattern. To match the value of a parameter literally
in a reverse subscript, rather than as a pattern, use ‘${(q)name}’ (Section 14.3 [Parameter
Expansion]|, page 47) to quote the expanded value.

Note that the ‘k’ and ‘K’ flags are reverse subscripting for an ordinary array, but are not reverse
subscripting for an associative array! (For an associative array, the keys in the array itself are
interpreted as patterns by those flags; the subscript is a plain string in that case.)

One final note, not directly related to subscripting: the numeric names of positional parameters
(Section 15.3 [Positional Parameters|, page 83) are parsed specially, so for example ‘$2foo’
is equivalent to ‘${2}foo’. Therefore, to use subscript syntax to extract a substring from a
positional parameter, the expansion must be surrounded by braces; for example, ‘${2[3,5]1}’
evaluates to the third through fifth characters of the second positional parameter, but ‘$2[3,5]’
is the entire second parameter concatenated with the filename generation pattern ‘[3,5]’.

15.3 Positional Parameters

The positional parameters provide access to the command-line arguments of a shell function,
shell script, or the shell itself; see Chapter 4 [Invocation], page 5, and also Chapter 9 [Functions],
page 22. The parameter n, where n is a number, is the nth positional parameter. The parameter
‘$0’ is a special case, see Section 15.5 [Parameters Set By The Shell], page 84.

The parameters *, @ and argv are arrays containing all the positional parameters; thus
‘$argv[nl’, etc., is equivalent to simply ‘$n’. Note that the options KSH_ARRAYS or
KSH_ZERO_SUBSCRIPT apply to these arrays as well, so with either of those options set,
‘${argv[0]}’ is equivalent to ‘$1’ and so on.

Positional parameters may be changed after the shell or function starts by using the set builtin,
by assigning to the argv array, or by direct assignment of the form ‘n=value’ where n is the
number of the positional parameter to be changed. This also creates (with empty values) any
of the positions from 1 to n that do not already have values. Note that, because the positional
parameters form an array, an array assignment of the form ‘n=(value ...)’ is allowed, and has
the effect of shifting all the values at positions greater than n by as many positions as necessary
to accommodate the new values.

Chapter 15: Parameters 84

15.4 Local Parameters

Shell function executions delimit scopes for shell parameters. (Parameters are dynamically
scoped.) The typeset builtin, and its alternative forms declare, integer, local and readonly
(but not export), can be used to declare a parameter as being local to the innermost scope.

When a parameter is read or assigned to, the innermost existing parameter of that name is
used. (That is, the local parameter hides any less-local parameter.) However, assigning to a
non-existent parameter, or declaring a new parameter with export, causes it to be created in
the outermost scope.

Local parameters disappear when their scope ends. unset can be used to delete a parameter
while it is still in scope; any outer parameter of the same name remains hidden.

Special parameters may also be made local; they retain their special attributes unless either the
existing or the newly-created parameter has the -h (hide) attribute. This may have unexpected
effects: there is no default value, so if there is no assignment at the point the variable is made
local, it will be set to an empty value (or zero in the case of integers). The following:

typeset PATH=/new/directory:$PATH
is valid for temporarily allowing the shell or programmes called from it to find the programs in
/new/directory inside a function.

Note that the restriction in older versions of zsh that local parameters were never exported has
been removed.

15.5 Parameters Set By The Shell

In the parameter lists that follow, the mark ‘<S>’ indicates that the parameter is special. ‘<Z>’
indicates that the parameter does not exist when the shell initializes in sh or ksh emulation
mode.

The parameters ‘!’, ‘#’, %’ ‘=70 2’ ‘@, ‘$’, ‘ARGC’, ‘HISTCMD’, ‘LINENOQ’, ‘PPID’, ‘status’,
‘TTYIDLE’, ‘zsh_eval_context’, ‘ZSH_EVAL_CONTEXT’, and ‘ZSH_SUBSHELL’ are read-only and
thus cannot be restored by the user, so they are not output by ‘typeset -p’. This also applies
to many read-only parameters loaded from modules.

The following parameters are automatically set by the shell:

I <S> The process ID of the last command started in the background with &, put into the
background with the bg builtin, or spawned with coproc.

<S> The number of positional parameters in decimal. Note that some confusion may
occur with the syntax $#param which substitutes the length of param. Use ${#} to
resolve ambiguities. In particular, the sequence ‘$#-..." in an arithmetic expression

is interpreted as the length of the parameter -, q.v.

ARGC <S> <Z>
Same as #.

$ <S> The process ID of this shell, set when the shell initializes. Processes forked from
the shell without executing a new program, such as command substitutions and
commands grouped with (...), are subshells that duplicate the current shell, and
thus substitute the same value for $$ as their parent shell.

- <S> Flags supplied to the shell on invocation or by the set or setopt commands.
* <S> An array containing the positional parameters.

argv <S> <Z>
Same as *. Assigning to argv changes the local positional parameters, but argv is
not itself a local parameter. Deleting argv with unset in any function deletes it

Chapter 15: Parameters 85

@ <S>
? <S>

0 <S>

everywhere, although only the innermost positional parameter array is deleted (so
* and @ in other scopes are not affected).

Same as argv[@], even when argv is not set.
The exit status returned by the last command.

The name used to invoke the current shell, or as set by the —c¢ command line option
upon invocation. If the FUNCTION_ARGZERO option is set, $0 is set upon entry to a
shell function to the name of the function, and upon entry to a sourced script to
the name of the script, and reset to its previous value when the function or script
returns.

status <S> <Z>

Same as 7.

pipestatus <S> <Z>

_ <S>

CPUTYPE

EGID <S>

EUID <S>

ERRNO <S>

An array containing the exit statuses returned by all commands in the last pipeline.

The last argument of the previous command. Also, this parameter is set in the
environment of every command executed to the full pathname of the command.

The machine type (microprocessor class or machine model), as determined at run
time.

The effective group ID of the shell process. If you have sufficient privileges, you may
change the effective group ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command with a different
effective group ID by ‘(EGID=gid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

The effective user ID of the shell process. If you have sufficient privileges, you may
change the effective user ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command with a different
effective user ID by ‘(EUID=uid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

The value of errno (see errno(3)) as set by the most recently failed system call.
This value is system dependent and is intended for debugging purposes. It is also
useful with the zsh/system module which allows the number to be turned into a
name or message.

To use this parameter, it must first be assigned a value (typically 0 (zero)). It is
initially unset for scripting compatibility.

FUNCNEST <S>

GID <S>

Integer. If greater than or equal to zero, the maximum nesting depth of shell
functions. When it is exceeded, an error is raised at the point where a function is
called. The default value is determined when the shell is configured, but is typically
500. Increasing the value increases the danger of a runaway function recursion
causing the shell to crash. Setting a negative value turns off the check.

The real group ID of the shell process. If you have sufficient privileges, you may
change the group ID of the shell process by assigning to this parameter. Also
(assuming sufficient privileges), you may start a single command under a different
group ID by ‘(GID=gid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

Chapter 15: Parameters 86

HISTCMD The current history event number in an interactive shell, in other words the event
number for the command that caused $HISTCMD to be read. If the current history
event modifies the history, HISTCMD changes to the new maximum history event
number.

HOST The current hostname.

LINENO <S>
The line number of the current line within the current script, sourced file, or shell
function being executed, whichever was started most recently. Note that in the case
of shell functions the line number refers to the function as it appeared in the original
definition, not necessarily as displayed by the functions builtin.

LOGNAME If the corresponding variable is not set in the environment of the shell, it is initialized
to the login name corresponding to the current login session. This parameter is
exported by default but this can be disabled using the typeset builtin. The value
is set to the string returned by the getlogin(3) system call if that is available.

MACHTYPE The machine type (microprocessor class or machine model), as determined at com-
pile time.

OLDPWD The previous working directory. This is set when the shell initializes and whenever
the directory changes.

OPTARG <S>
The value of the last option argument processed by the getopts command.

OPTIND <S>
The index of the last option argument processed by the getopts command.

OSTYPE The operating system, as determined at compile time.

PPID <S> The process ID of the parent of the shell, set when the shell initializes. As with $$,
the value does not change in subshells created as a duplicate of the current shell.

PWD The present working directory. This is set when the shell initializes and whenever
the directory changes.

RANDOM <S>
A pseudo-random integer from 0 to 32767, newly generated each time this parameter
is referenced. The random number generator can be seeded by assigning a numeric
value to RANDOM.

The values of RANDOM form an intentionally-repeatable pseudo-random sequence;
subshells that reference RANDOM will result in identical pseudo-random values unless
the value of RANDOM is referenced or seeded in the parent shell in between subshell
invocations.

SECONDS <S>
The number of seconds since shell invocation. If this parameter is assigned a value,
then the value returned upon reference will be the value that was assigned plus the
number of seconds since the assignment.

Unlike other special parameters, the type of the SECONDS parameter can be changed
using the typeset command. The type may be changed only to one of the floating
point types or back to integer. For example, ‘typeset -F SECONDS’ causes the value
to be reported as a floating point number. The value is available to microsecond
accuracy, although the shell may show more or fewer digits depending on the use
of typeset. See the documentation for the builtin typeset in Chapter 17 [Shell
Builtin Commands|, page 124, for more details.

Chapter 15: Parameters 87

SHLVL <S> Incremented by one each time a new shell is started.

signals

An array containing the names of the signals. Note that with the standard zsh
numbering of array indices, where the first element has index 1, the signals are
offset by 1 from the signal number used by the operating system. For example, on
typical Unix-like systems HUP is signal number 1, but is referred to as $signals[2].
This is because of EXIT at position 1 in the array, which is used internally by zsh
but is not known to the operating system.

TRY_BLOCK_ERROR <S>

In an always block, indicates whether the preceding list of code caused an error.
The value is 1 to indicate an error, 0 otherwise. It may be reset, clearing the error
condition. See Section 6.3 [Complex Commands|, page 11,

TRY_BLOCK_INTERRUPT <S>

TTY

This variable works in a similar way to TRY_BLOCK_ERROR, but represents the status
of an interrupt from the signal SIGINT, which typically comes from the keyboard
when the user types ~C. If set to 0, any such interrupt will be reset; otherwise, the
interrupt is propagated after the always block.

Note that it is possible that an interrupt arrives during the execution of the always
block; this interrupt is also propagated.

The name of the tty associated with the shell, if any.

TTYIDLE <S>

UID <S>

The idle time of the tty associated with the shell in seconds or -1 if there is no such
tty.

The real user ID of the shell process. If you have sufficient privileges, you may
change the user ID of the shell by assigning to this parameter. Also (assuming
sufficient privileges), you may start a single command under a different user ID by
‘(UID=uid; command)’

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

USERNAME <S>

VENDOR

The username corresponding to the real user ID of the shell process. If you have
sufficient privileges, you may change the username (and also the user ID and group
ID) of the shell by assigning to this parameter. Also (assuming sufficient privileges),
you may start a single command under a different username (and user ID and group
ID) by ¢ (USERNAME=username; command)’

The vendor, as determined at compile time.

zsh_eval_context <S> <Z> (ZSH_EVAL_CONTEXT <S>)

An array (colon-separated list) indicating the context of shell code that is being run.
Each time a piece of shell code that is stored within the shell is executed a string
is temporarily appended to the array to indicate the type of operation that is being
performed. Read in order the array gives an indication of the stack of operations
being performed with the most immediate context last.

Note that the variable does not give information on syntactic context such as
pipelines or subshells. Use $ZSH_SUBSHELL to detect subshells.

The context is one of the following:

cmdarg Code specified by the -c option to the command line that invoked the
shell.

[4

cmdsubst Command substitution using the or $(...) construct.

Chapter 15: Parameters 88

equalsubst
File substitution using the =(...) construct.

eval Code executed by the eval builtin.

evalautofunc
Code executed with the KSH_AUTOLOAD mechanism in order to define an
autoloaded function.

fc Code from the shell history executed by the —e option to the fc builtin.
file Lines of code being read directly from a file, for example by the source
builtin.

filecode Lines of code being read from a .zwc file instead of directly from the
source file.

globqual Code executed by the e or + glob qualifier.
globsort Code executed to order files by the o glob qualifier.
insubst File substitution using the <(...) construct.

loadautofunc
Code read directly from a file to define an autoloaded function.

outsubst File substitution using the >(...) construct.

sched Code executed by the sched builtin.
shfunc A shell function.
stty Code passed to stty by the STTY environment variable. Normally this is

passed directly to the system’s stty command, so this value is unlikely
to be seen in practice.

style Code executed as part of a style retrieved by the zstyle builtin from
the zsh/zutil module.

toplevel The highest execution level of a script or interactive shell.

trap Code executed as a trap defined by the trap builtin. Traps defined as
functions have the context shfunc. As traps are asynchronous they may
have a different hierarchy from other code.

zpty Code executed by the zpty builtin from the zsh/zpty module.

zregexparse—-guard
Code executed as a guard by the zregexparse command from the
zsh/zutil module.

zregexparse-action
Code executed as an action by the zregexparse command from the
zsh/zutil module.

ZSH_ARGZERO
If zsh was invoked to run a script, this is the name of the script. Otherwise, it is
the name used to invoke the current shell. This is the same as the value of $0 when
the POSIX_ARGZERO option is set, but is always available.

ZSH_EXECUTION_STRING
If the shell was started with the option -c, this contains the argument passed to the
option. Otherwise it is not set.

Chapter 15: Parameters 89

ZSH_NAME Expands to the basename of the command used to invoke this instance of zsh.

ZSH_PATCHLEVEL
The output of ‘git describe --tags --long’ for the zsh repository used to build
the shell. This is most useful in order to keep track of versions of the shell during
development between releases; hence most users should not use it and should instead
rely on $ZSH_VERSION.

zsh_scheduled_events
See Section 22.24 [The zsh/sched Module], page 321.

ZSH_SCRIPT
If zsh was invoked to run a script, this is the name of the script, otherwise it is
unset.

ZSH_SUBSHELL
Readonly integer. Initially zero, incremented each time the shell forks to create a
subshell for executing code. Hence ‘(print $ZSH_SUBSHELL)’ and ‘print $(print
$ZSH_SUBSHELL)’ output 1, while ‘((print $ZSH_SUBSHELL))’ outputs 2.

ZSH_VERSION
The version number of the release of zsh.

15.6 Parameters Used By The Shell

The following parameters are used by the shell. Again, ‘<S>’ indicates that the parameter is
special and ‘<Z>’ indicates that the parameter does not exist when the shell initializes in sh or
ksh emulation mode.

In cases where there are two parameters with an upper- and lowercase form of the same name,
such as path and PATH, the lowercase form is an array and the uppercase form is a scalar with the
elements of the array joined together by colons. These are similar to tied parameters created via
‘typeset -T’. The normal use for the colon-separated form is for exporting to the environment,
while the array form is easier to manipulate within the shell. Note that unsetting either of the
pair will unset the other; they retain their special properties when recreated, and recreating one
of the pair will recreate the other.

ARGVO If exported, its value is used as the argv[0] of external commands. Usually used
in constructs like ‘ARGVO=emacs nethack’.

BAUD The rate in bits per second at which data reaches the terminal. The line editor
will use this value in order to compensate for a slow terminal by delaying updates
to the display until necessary. If the parameter is unset or the value is zero the
compensation mechanism is turned off. The parameter is not set by default.

This parameter may be profitably set in some circumstances, e.g. for slow modems

dialing into a communications server, or on a slow wide area network. It should be
set to the baud rate of the slowest part of the link for best performance.

cdpath <S> <Z> (CDPATH <S>)
An array (colon-separated list) of directories specifying the search path for the cd
command.

COLUMNS <S>
The number of columns for this terminal session. Used for printing select lists and
for the line editor.

CORRECT_IGNORE
If set, is treated as a pattern during spelling correction. Any potential correction
that matches the pattern is ignored. For example, if the value is ‘_*’ then completion

Chapter 15: Parameters 90

functions (which, by convention, have names beginning with ‘_’) will never be offered
as spelling corrections. The pattern does not apply to the correction of file names, as
applied by the CORRECT_ALL option (so with the example just given files beginning
with ‘_” in the current directory would still be completed).

CORRECT_IGNORE_FILE
If set, is treated as a pattern during spelling correction of file names. Any file name
that matches the pattern is never offered as a correction. For example, if the value
is ‘. *’ then dot file names will never be offered as spelling corrections. This is useful
with the CORRECT_ALL option.

DIRSTACKSIZE
The maximum size of the directory stack, by default there is no limit. If the stack
gets larger than this, it will be truncated automatically. This is useful with the
AUTO_PUSHD option.

ENV If the ENV environment variable is set when zsh is invoked as sh or ksh, $ENV is
sourced after the profile scripts. The value of ENV is subjected to parameter expan-
sion, command substitution, and arithmetic expansion before being interpreted as
a pathname. Note that ENV is not used unless the shell is interactive and zsh is
emulating sh or ksh.

FCEDIT The default editor for the fc builtin. If FCEDIT is not set, the parameter EDITOR is
used; if that is not set either, a builtin default, usually vi, is used.

fignore <S> <Z> (FIGNORE <S>)
An array (colon separated list) containing the suffixes of files to be ignored during
filename completion. However, if completion only generates files with suffixes in this
list, then these files are completed anyway.

fpath <S> <Z> (FPATH <S>)
An array (colon separated list) of directories specifying the search path for function
definitions. This path is searched when a function with the —u attribute is referenced.
If an executable file is found, then it is read and executed in the current environment.

histchars <S>
Three characters used by the shell’s history and lexical analysis mechanism. The
first character signals the start of a history expansion (default ‘!’). The second
character signals the start of a quick history substitution (default ‘*’). The third
character is the comment character (default ‘#’).

The characters must be in the ASCII character set; any attempt to set histchars to
characters with a locale-dependent meaning will be rejected with an error message.

HISTCHARS <S> <Z>
Same as histchars. (Deprecated.)

HISTFILE The file to save the history in when an interactive shell exits. If unset, the history
is not saved.

HISTORY_IGNORE
If set, is treated as a pattern at the time history files are written. Any potential
history entry that matches the pattern is skipped. For example, if the value is ‘fc
*” then commands that invoke the interactive history editor are never written to the
history file.

Note that HISTORY_IGNORE defines a single pattern: to specify alternatives use the
‘(first| second]|...)’ syntax.

Chapter 15: Parameters 91

Compare the HIST_NO_STORE option or the zshaddhistory hook, either of which
would prevent such commands from being added to the interactive history at all. If
you wish to use HISTORY_IGNORE to stop history being added in the first place, you
can define the following hook:

zshaddhistory() {
emulate -L zsh
uncomment if HISTORY_IGNORE
should use EXTENDED_GLOB syntax
setopt extendedglob
([$1 '= ${"HISTORY_IGNORE}]]

HISTSIZE <S>

HOME <S>

IFS <S>

The maximum number of events stored in the internal history list. If you use the
HIST_EXPIRE_DUPS_FIRST option, setting this value larger than the SAVEHIST size
will give you the difference as a cushion for saving duplicated history events.

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

The default argument for the cd command. This is not set automatically by the
shell in sh, ksh or csh emulation, but it is typically present in the environment
anyway, and if it becomes set it has its usual special behaviour.

Internal field separators (by default space, tab, newline and NUL), that are used to
separate words which result from command or parameter expansion and words read
by the read builtin. Any characters from the set space, tab and newline that appear
in the IF'S are called IF'S white space. One or more IFS white space characters or one
non-IFS white space character together with any adjacent IFS white space character
delimit a field. If an IFS white space character appears twice consecutively in the
IF'S, this character is treated as if it were not an IFS white space character.

If the parameter is unset, the default is used. Note this has a different effect from
setting the parameter to an empty string.

KEYBOARD_HACK

This variable defines a character to be removed from the end of the command line
before interpreting it (interactive shells only). It is intended to fix the problem
with keys placed annoyingly close to return and replaces the SUNKEYBOARDHACK
option which did this for backquotes only. Should the chosen character be one of
singlequote, doublequote or backquote, there must also be an odd number of them
on the command line for the last one to be removed.

For backward compatibility, if the SUNKEYBOARDHACK option is explicitly set, the
value of KEYBOARD_HACK reverts to backquote. If the option is explicitly unset, this
variable is set to empty.

KEYTIMEOUT

LANG <S>

LC_ALL <S>

The time the shell waits, in hundredths of seconds, for another key to be pressed
when reading bound multi-character sequences.

This variable determines the locale category for any category not specifically selected
via a variable starting with ‘LC_".

This variable overrides the value of the ‘LANG’ variable and the value of any of the
other variables starting with ‘LC_".

Chapter 15: Parameters 92

LC_COLLATE <S>
This variable determines the locale category for character collation information
within ranges in glob brackets and for sorting.

LC_CTYPE <S>
This variable determines the locale category for character handling functions. If the
MULTIBYTE option is in effect this variable or LANG should contain a value that reflects
the character set in use, even if it is a single-byte character set, unless only the 7-bit
subset (ASCII) is used. For example, if the character set is ISO-8859-1, a suitable
value might be en_US.1is088591 (certain Linux distributions) or en_US.IS08859-1
(MacOS).

LC_MESSAGES <5>
This variable determines the language in which messages should be written. Note
that zsh does not use message catalogs.

LC_NUMERIC <S>
This variable affects the decimal point character and thousands separator character
for the formatted input/output functions and string conversion functions. Note that
zsh ignores this setting when parsing floating point mathematical expressions.

LC_TIME <S>
This variable determines the locale category for date and time formatting in prompt
escape sequences.

LINES <S> The number of lines for this terminal session. Used for printing select lists and for
the line editor.

LISTMAX In the line editor, the number of matches to list without asking first. If the value
is negative, the list will be shown if it spans at most as many lines as given by the
absolute value. If set to zero, the shell asks only if the top of the listing would scroll
off the screen.

MAIL If this parameter is set and mailpath is not set, the shell looks for mail in the
specified file.

MAILCHECK
The interval in seconds between checks for new mail.

mailpath <S> <Z> (MAILPATH <S>)
An array (colon-separated list) of filenames to check for new mail. Each filename
can be followed by a ‘?’ and a message that will be printed. The message will
undergo parameter expansion, command substitution and arithmetic expansion with
the variable $_ defined as the name of the file that has changed. The default message
is ‘You have new mail’. If an element is a directory instead of a file the shell will
recursively check every file in every subdirectory of the element.

manpath <S> <Z> (MANPATH <S> <Z>)
An array (colon-separated list) whose value is not used by the shell. The manpath
array can be useful, however, since setting it also sets MANPATH, and vice versa.

match

mbegin

mend Arrays set by the shell when the b globbing flag is used in pattern matches. See the
subsection Globbing flags in Section 14.8 [Filename Generation|, page 65.

MATCH

MBEGIN

MEND Set by the shell when the m globbing flag is used in pattern matches. See the

subsection Globbing flags in Section 14.8 [Filename Generation], page 65.

Chapter 15: Parameters 93

module_path <S> <Z> (MODULE_PATH <S>)
An array (colon-separated list) of directories that zmodload searches for dynam-
ically loadable modules. This is initialized to a standard pathname, usually
‘/usr/local/lib/zsh/$ZSH_VERSION’. (The ‘/usr/local/lib’ part varies from
installation to installation.) For security reasons, any value set in the environment
when the shell is started will be ignored.

These parameters only exist if the installation supports dynamic module loading.

NULLCMD <S>
The command name to assume if a redirection is specified with no command. De-
faults to cat. For sh/ksh behavior, change this to :. For csh-like behavior, unset
this parameter; the shell will print an error message if null commands are entered.

path <S> <Z> (PATH <S>)
An array (colon-separated list) of directories to search for commands. When this
parameter is set, each directory is scanned and all files found are put in a hash table.

POSTEDIT <S>
This string is output whenever the line editor exits. It usually contains termcap
strings to reset the terminal.

PROMPT <S> <Z>
PROMPT2 <S> <Z>
PROMPT3 <S> <Z>
PROMPT4 <S> <Z>
Same as PS1, PS2, PS3 and PS4, respectively.

prompt <S> <Z>
Same as PS1.

PROMPT_EQOL_MARK
When the PROMPT_CR and PROMPT_SP options are set, the PROMPT_EOL_MARK param-
eter can be used to customize how the end of partial lines are shown. This parameter
undergoes prompt expansion, with the PROMPT_PERCENT option set. If not set, the
default behavior is equivalent to the value ‘%B%S/#%s%b’.

PS1 <S> The primary prompt string, printed before a command is read. It undergoes a spe-
cial form of expansion before being displayed; see Chapter 13 [Prompt Expansion],
page 35. The default is ‘%mi# °.

PS2 <S> The secondary prompt, printed when the shell needs more information to complete
a command. It is expanded in the same way as PS1. The default is ‘%_> ’, which
displays any shell constructs or quotation marks which are currently being processed.

PS3 <S> Selection prompt used within a select loop. It is expanded in the same way as
PS1. The default is ‘7# .

PS4 <S> The execution trace prompt. Default is ‘“+%N:%i> ’, which displays the name of the
current shell structure and the line number within it. In sh or ksh emulation, the
default is ‘+ .

psvar <S> <Z> (PSVAR <S>)
An array (colon-separated list) whose elements can be used in PROMPT strings. Set-
ting psvar also sets PSVAR, and vice versa.

READNULLCMD <S>
The command name to assume if a single input redirection is specified with no
command. Defaults to more.

Chapter 15: Parameters 94

REPORTMEMORY

REPORTTIME

REPLY

reply

If nonnegative, commands whose maximum resident set size (roughly speaking, main
memory usage) in kilobytes is greater than this value have timing statistics reported.
The format used to output statistics is the value of the TIMEFMT parameter, which is
the same as for the REPORTTIME variable and the time builtin; note that by default
this does not output memory usage. Appending " max RSS %M" to the value of
TIMEFMT causes it to output the value that triggered the report. If REPORTTIME is
also in use, at most a single report is printed for both triggers. This feature requires
the getrusage () system call, commonly supported by modern Unix-like systems.

If nonnegative, commands whose combined user and system execution times (mea-
sured in seconds) are greater than this value have timing statistics printed for them.
Output is suppressed for commands executed within the line editor, including com-
pletion; commands explicitly marked with the time keyword still cause the summary
to be printed in this case.

This parameter is reserved by convention to pass string values between shell scripts
and shell builtins in situations where a function call or redirection are impossible or
undesirable. The read builtin and the select complex command may set REPLY,
and filename generation both sets and examines its value when evaluating certain
expressions. Some modules also employ REPLY for similar purposes.

As REPLY, but for array values rather than strings.

RPROMPT <S>

RPS1 <S>

This prompt is displayed on the right-hand side of the screen when the primary
prompt is being displayed on the left. This does not work if the SINGLE_LINE_ZLE
option is set. It is expanded in the same way as PS1.

RPROMPT2 <S>

RPS2 <S>

SAVEHIST

This prompt is displayed on the right-hand side of the screen when the secondary
prompt is being displayed on the left. This does not work if the SINGLE_LINE_ZLE
option is set. It is expanded in the same way as PS2.

The maximum number of history events to save in the history file.

If this is made local, it is not implicitly set to 0, but may be explicitly set locally.

SPROMPT <S>

STTY

The prompt used for spelling correction. The sequence ‘4R’ expands to the string
which presumably needs spelling correction, and ‘/%r’ expands to the proposed cor-
rection. All other prompt escapes are also allowed.

The actions available at the prompt are [nyae]:

n (‘no’) (default)
Discard the correction and run the command.

y (‘yes’) Make the correction and run the command.
a (‘abort’) Discard the entire command line without running it.
e (‘edit’) Resume editing the command line.

If this parameter is set in a command’s environment, the shell runs the stty com-
mand with the value of this parameter as arguments in order to set up the terminal
before executing the command. The modes apply only to the command, and are
reset when it finishes or is suspended. If the command is suspended and continued
later with the fg or wait builtins it will see the modes specified by STTY, as if it were

Chapter 15: Parameters 95

TERM <S>

not suspended. This (intentionally) does not apply if the command is continued via
‘kill -CONT’. STTY is ignored if the command is run in the background, or if it is
in the environment of the shell but not explicitly assigned to in the input line. This
avoids running stty at every external command by accidentally exporting it. Also
note that STTY should not be used for window size specifications; these will not be
local to the command.

If the parameter is set and empty, all of the above applies except that stty is not
run. This can be useful as a way to freeze the tty around a single command, blocking
its changes to tty settings, similar to the ttyctl builtin.

The type of terminal in use. This is used when looking up termcap sequences. An
assignment to TERM causes zsh to re-initialize the terminal, even if the value does
not change (e.g., ‘TERM=$TERM’). It is necessary to make such an assignment upon
any change to the terminal definition database or terminal type in order for the new
settings to take effect.

TERMINFO <S>

A reference to your terminfo database, used by the ‘terminfo’ library when the
system has it; see terminfo(5). If set, this causes the shell to reinitialise the terminal,
making the workaround ‘TERM=$TERM’ unnecessary.

TERMINFO_DIRS <S>

TIMEFMT

A colon-seprarated list of terminfo databases, used by the ‘terminfo’ library when
the system has it; see terminfo(5). This variable is only used by certain terminal
libraries, in particular ncurses; see terminfo(5) to check support on your system.
If set, this causes the shell to reinitialise the terminal, making the workaround
‘TERM=$TERM’ unnecessary. Note that unlike other colon-separated arrays this is not
tied to a zsh array.

The format of process time reports with the time keyword. The default is ‘%4J %U
user %S system %P cpu %*E total’. Recognizes the following escape sequences,
although not all may be available on all systems, and some that are available may
not be useful:

o AR

YA CPU seconds spent in user mode.

yAS] CPU seconds spent in kernel mode.

%E Elapsed time in seconds.

%P The CPU percentage, computed as 100*(%U+%S) /%E.

W Number of times the process was swapped.

WX The average amount in (shared) text space used in kilobytes.

%D The average amount in (unshared) data/stack space used in kilobytes.
%K The total space used (%X+%D) in kilobytes.

M The maximum memory the process had in use at any time in kilobytes.
WF The number of major page faults (page needed to be brought from disk).
JR The number of minor page faults.

yAl The number of input operations.

%0 The number of output operations.

Chapter 15: Parameters 96

TMOUT

TMPPREFIX

TMPSUFFIX

hr The number of socket messages received.

s The number of socket messages sent.

JA'S The number of signals received.

A Number of voluntary context switches (waits).
he Number of involuntary context switches.

hJ The name of this job.

A star may be inserted between the percent sign and flags printing time (e.g., ‘%*E’);
this causes the time to be printed in ‘hh:mm:ss. ttt’ format (hours and minutes are
only printed if they are not zero). Alternatively, ‘m’ or ‘v’ may be used (e.g., ‘%mE’)
to produce time output in milliseconds or microseconds, respectively.

If this parameter is nonzero, the shell will receive an ALRM signal if a command is not
entered within the specified number of seconds after issuing a prompt. If there is a
trap on SIGALRVM, it will be executed and a new alarm is scheduled using the value
of the TMOUT parameter after executing the trap. If no trap is set, and the idle time
of the terminal is not less than the value of the TMOUT parameter, zsh terminates.
Otherwise a new alarm is scheduled to TMOUT seconds after the last keypress.

A pathname prefix which the shell will use for all temporary files. Note that this
should include an initial part for the file name as well as any directory names. The
default is ‘/tmp/zsh’.

A filename suffix which the shell will use for temporary files created by process
substitutions (e.g., ‘=(1ist)’). Note that the value should include a leading dot .’
if intended to be interpreted as a file extension. The default is not to append any
suffix, thus this parameter should be assigned only when needed and then unset
again.

WORDCHARS <S>

ZBEEP

ZDOTDIR

A list of non-alphanumeric characters considered part of a word by the line editor.

If set, this gives a string of characters, which can use all the same codes as the
bindkey command as described in Section 22.33 [The zsh/zle Module], page 339,
that will be output to the terminal instead of beeping. This may have a visible
instead of an audible effect; for example, the string ‘\e[?5h\e[?51" on a vt100
or xterm will have the effect of flashing reverse video on and off (if you usually
use reverse video, you should use the string ‘\e[?51\e[?5h’ instead). This takes
precedence over the NOBEEP option.

The directory to search for shell startup files (.zshre, etc), if not $HOME.

zle_bracketed_paste

Many terminal emulators have a feature that allows applications to identify when
text is pasted into the terminal rather than being typed normally. For ZLE, this
means that special characters such as tabs and newlines can be inserted instead of
invoking editor commands. Furthermore, pasted text forms a single undo event and
if the region is active, pasted text will replace the region.

This two-element array contains the terminal escape sequences for enabling and
disabling the feature. These escape sequences are used to enable bracketed paste
when ZLE is active and disable it at other times. Unsetting the parameter has the
effect of ensuring that bracketed paste remains disabled.

Chapter 16: Options 97

zle_highlight
An array describing contexts in which ZLE should highlight the input text. See
Section 18.7 [Character Highlighting], page 197.

ZLE_LINE_ABORTED
This parameter is set by the line editor when an error occurs. It contains the line that
was being edited at the point of the error. ‘print -zr -- $ZLE_LINE_ABORTED’ can
be used to recover the line. Only the most recent line of this kind is remembered.

ZLE_REMOVE_SUFFIX_CHARS

ZLE_SPACE_SUFFIX_CHARS
These parameters are used by the line editor. In certain circumstances suffixes (typ-
ically space or slash) added by the completion system will be removed automatically,
either because the next editing command was not an insertable character, or because
the character was marked as requiring the suffix to be removed.

These variables can contain the sets of characters that will cause the suffix to be
removed. If ZLE_REMOVE_SUFFIX_CHARS is set, those characters will cause the suffix
to be removed; if ZLE_SPACE_SUFFIX_CHARS is set, those characters will cause the
suffix to be removed and replaced by a space.

If ZLE_REMOVE_SUFFIX_CHARS is not set, the default behaviour is equivalent to:
ZLE_REMOVE_SUFFIX_CHARS=$’ \t\n;&|’

If ZLE_REMOVE_SUFFIX_CHARS is set but is empty, no characters have this behaviour.
ZLE_SPACE_SUFFIX_CHARS takes precedence, so that the following:

ZLE_SPACE_SUFFIX_CHARS=$’&|’

causes the characters ‘&’ and ‘|’ to remove the suffix but to replace it with a space.

To illustrate the difference, suppose that the option AUTO_REMOVE_SLASH is in effect
and the directory DIR has just been completed, with an appended /, following which
the user types ‘4’. The default result is ‘DIR&’. With ZLE_REMOVE_SUFFIX_CHARS
set but without including ‘&’ the result is ‘DIR/&’. With ZLE_SPACE_SUFFIX_CHARS
set to include ‘&’ the result is ‘DIR &’.

Note that certain completions may provide their own suffix removal or replacement
behaviour which overrides the values described here. See the completion system
documentation in Chapter 20 [Completion System], page 215.

ZLE_RPROMPT_INDENT <S>
If set, used to give the indentation between the right hand side of the right prompt
in the line editor as given by RPS1 or RPROMPT and the right hand side of the screen.
If not set, the value 1 is used.

Typically this will be used to set the value to 0 so that the prompt appears flush
with the right hand side of the screen. This is not the default as many terminals
do not handle this correctly, in particular when the prompt appears at the extreme
bottom right of the screen. Recent virtual terminals are more likely to handle this
case correctly. Some experimentation is necessary.

16 Options

Chapter 16: Options 98

16.1 Specifying Options

Options are primarily referred to by name. These names are case insensitive and underscores
are ignored. For example, ‘allexport’ is equivalent to ‘A__11eXP_ort’.

The sense of an option name may be inverted by preceding it with ‘no’, so ‘setopt No_Beep’
is equivalent to ‘unsetopt beep’. This inversion can only be done once, so ‘nonobeep’ is not a
synonym for ‘beep’. Similarly, ‘tify’ is not a synonym for ‘nonotify’ (the inversion of ‘notify’).
Some options also have one or more single letter names. There are two sets of single let-
ter options: one used by default, and another used to emulate sh/ksh (used when the
SH_OPTION_LETTERS option is set). The single letter options can be used on the shell com-
mand line, or with the set, setopt and unsetopt builtins, as normal Unix options preceded by
>

The sense of the single letter options may be inverted by using ‘+’ instead of ‘=’. Some of the
single letter option names refer to an option being off, in which case the inversion of that name
refers to the option being on. For example, ‘+n’ is the short name of ‘exec’, and ‘-n’ is the short
name of its inversion, ‘noexec’.

In strings of single letter options supplied to the shell at startup, trailing whitespace will be
ignored; for example the string ‘-f ’ will be treated just as ‘-f’, but the string ‘-f i’ is an
error. This is because many systems which implement the ‘#!’ mechanism for calling scripts do
not strip trailing whitespace.

It is possible for options to be set within a function scope. See the description of the option
LOCAL_OPTIONS below.

16.2 Description of Options

In the following list, options set by default in all emulations are marked <D>; those set by
default only in csh, ksh, sh, or zsh emulations are marked <C>, <K>, <S>, <Z> as appropriate.
When listing options (by ‘setopt’, ‘unsetopt’, ‘set -o’ or ‘set +o’), those turned on by default
appear in the list prefixed with ‘no’. Hence (unless KSH_OPTION_PRINT is set), ‘setopt’ shows
all options whose settings are changed from the default.

16.2.1 Changing Directories

AUTO_CD (-J)
If a command is issued that can’t be executed as a normal command, and the
command is the name of a directory, perform the cd command to that directory.
This option is only applicable if the option SHIN_STDIN is set, i.e. if commands are
being read from standard input. The option is designed for interactive use; it is
recommended that cd be used explicitly in scripts to avoid ambiguity.

AUTO_PUSHD (-N)
Make cd push the old directory onto the directory stack.

CDABLE_VARS (-T)
If the argument to a cd command (or an implied cd with the AUTO_CD option set)
is not a directory, and does not begin with a slash, try to expand the expression as
if it were preceded by a ‘' (see Section 14.7 [Filename Expansion], page 63).

CD_SILENT
Never print the working directory after a cd (whether explicit or implied with the
AUTO_CD option set). cd normally prints the working directory when the argument
given to it was -, a stack entry, or the name of a directory found under CDPATH.
Note that this is distinct from pushd’s stack-printing behaviour, which is controlled
by PUSHD_SILENT. This option overrides the printing-related effects of POSIX_CD.

Chapter 16: Options 99

CHASE_DOTS
When changing to a directory containing a path segment ‘. .” which would otherwise
be treated as canceling the previous segment in the path (in other words, ‘foo/. .’
would be removed from the path, or if ..’ is the first part of the path, the last part
of the current working directory would be removed), instead resolve the path to the
physical directory. This option is overridden by CHASE_LINKS.

For example, suppose /foo/bar is a link to the directory /alt/rod. Without this
option set, ‘cd /foo/bar/..’ changes to /foo; with it set, it changes to /alt. The
same applies if the current directory is /foo/bar and ‘cd ..’ is used. Note that all
other symbolic links in the path will also be resolved.

CHASE_LINKS (-w)
Resolve symbolic links to their true values when changing directory. This also has
the effect of CHASE_DOTS, i.e. a ‘..’ path segment will be treated as referring to the
physical parent, even if the preceding path segment is a symbolic link.

POSIX_CD <K> <S>

Modifies the behaviour of cd, chdir and pushd commands to make them more com-
patible with the POSIX standard. The behaviour with the option unset is described
in the documentation for the cd builtin in Chapter 17 [Shell Builtin Commands],
page 124. If the option is set, the shell does not test for directories beneath the
local directory (‘.’) until after all directories in cdpath have been tested, and the cd
and chdir commands do not recognise arguments of the form ‘{+|-}n’ as directory
stack entries.

Also, if the option is set, the conditions under which the shell prints the new directory
after changing to it are modified. It is no longer restricted to interactive shells
(although printing of the directory stack with pushd is still limited to interactive
shells); and any use of a component of CDPATH, including a ‘.’ but excluding an empty
component that is otherwise treated as ‘.’, causes the directory to be printed.

PUSHD_IGNORE_DUPS
Don’t push multiple copies of the same directory onto the directory stack.

PUSHD_MINUS
Exchanges the meanings of ‘+’ and ‘-
in the stack.

” when used with a number to specify a directory

PUSHD_SILENT (-E)
Do not print the directory stack after pushd or popd.

PUSHD_TO_HOME (-D)
Have pushd with no arguments act like ‘pushd $HOME’.

16.2.2 Completion

ALWAYS_LAST_PROMPT <D>
If unset, key functions that list completions try to return to the last prompt if given
a numeric argument. If set these functions try to return to the last prompt if given
no numeric argument.

ALWAYS_TO_END
If a completion is performed with the cursor within a word, and a full completion is
inserted, the cursor is moved to the end of the word. That is, the cursor is moved
to the end of the word if either a single match is inserted or menu completion is
performed.

Chapter 16: Options 100

AUTO_LIST (-9) <D>
Automatically list choices on an ambiguous completion.

AUTO_MENU <D>
Automatically use menu completion after the second consecutive request for com-
pletion, for example by pressing the tab key repeatedly. This option is overridden
by MENU_COMPLETE.

AUTO_NAME_DIRS
Any parameter that is set to the absolute name of a directory immediately becomes a
name for that directory, that will be used by the ‘%~ and related prompt sequences,
and will be available when completion is performed on a word starting with ‘~.
(Otherwise, the parameter must be used in the form ‘~param’ first.)

AUTO_PARAM_KEYS <D>
If a parameter name was completed and a following character (normally a space)
automatically inserted, and the next character typed is one of those that have to
come directly after the name (like ‘}’, ‘:’, etc.), the automatically added character is
deleted, so that the character typed comes immediately after the parameter name.
Completion in a brace expansion is affected similarly: the added character is a *,’,
which will be removed if ‘}’ is typed next.

AUTO_PARAM_SLASH <D>
If a parameter is completed whose content is the name of a directory, then add a
trailing slash instead of a space.

AUTO_REMOVE_SLASH <D>
When the last character resulting from a completion is a slash and the next character
typed is a word delimiter, a slash, or a character that ends a command (such as a
semicolon or an ampersand), remove the slash.

BASH_AUTO_LIST
On an ambiguous completion, automatically list choices when the completion func-
tion is called twice in succession. This takes precedence over AUTO_LIST. The setting
of LIST_AMBIGUOUS is respected. If AUTO_MENU is set, the menu behaviour will then
start with the third press. Note that this will not work with MENU_COMPLETE, since
repeated completion calls immediately cycle through the list in that case.

COMPLETE_ALTASES
Prevents aliases on the command line from being internally substituted before com-
pletion is attempted. The effect is to make the alias a distinct command for com-
pletion purposes.

COMPLETE_IN_WORD
If unset, the cursor is set to the end of the word if completion is started. Otherwise
it stays there and completion is done from both ends.

GLOB_COMPLETE
When the current word has a glob pattern, do not insert all the words resulting from
the expansion but generate matches as for completion and cycle through them like
MENU_COMPLETE. The matches are generated as if a ‘*” was added to the end of the
word, or inserted at the cursor when COMPLETE_IN_WORD is set. This actually uses
pattern matching, not globbing, so it works not only for files but for any completion,
such as options, user names, etc.

Note that when the pattern matcher is used, matching control (for example, case-
insensitive or anchored matching) cannot be used. This limitation only applies when

Chapter 16: Options 101

the current word contains a pattern; simply turning on the GLOB_COMPLETE option
does not have this effect.

HASH_LIST_ALL <D>
Whenever a command completion or spelling correction is attempted, make sure the
entire command path is hashed first. This makes the first completion slower but
avoids false reports of spelling errors.

LIST_AMBIGUQOUS <D>
This option works when AUTO_LIST or BASH_AUTO_LIST is also set. If there is an
unambiguous prefix to insert on the command line, that is done without a completion
list being displayed; in other words, auto-listing behaviour only takes place when
nothing would be inserted. In the case of BASH_AUTO_LIST, this means that the list
will be delayed to the third call of the function.

LIST_BEEP <D>
Beep on an ambiguous completion. More accurately, this forces the completion
widgets to return status 1 on an ambiguous completion, which causes the shell to
beep if the option BEEP is also set; this may be modified if completion is called from
a user-defined widget.

LIST_PACKED
Try to make the completion list smaller (occupying less lines) by printing the matches
in columns with different widths.

LIST_ROWS_FIRST
Lay out the matches in completion lists sorted horizontally, that is, the second match
is to the right of the first one, not under it as usual.

LIST_TYPES (-X) <D>
When listing files that are possible completions, show the type of each file with a
trailing identifying mark.

MENU_COMPLETE (-Y)
On an ambiguous completion, instead of listing possibilities or beeping, insert the
first match immediately. Then when completion is requested again, remove the first
match and insert the second match, etc. When there are no more matches, go back
to the first one again. reverse-menu-complete may be used to loop through the
list in the other direction. This option overrides AUTO_MENU.

REC_EXACT (-S)
If the string on the command line exactly matches one of the possible completions,
it is accepted, even if there is another completion (i.e. that string with something
else added) that also matches.

16.2.3 Expansion and Globbing

BAD_PATTERN (+2) <C> <Z>
If a pattern for filename generation is badly formed, print an error message. (If this
option is unset, the pattern will be left unchanged.)

BARE_GLOB_QUAL <Z>
In a glob pattern, treat a trailing set of parentheses as a qualifier list, if it contains
no ‘|’, ‘C or (if special) ‘~’ characters. See Section 14.8 [Filename Generation],
page 65.

Chapter 16: Options 102

BRACE_CCL
Expand expressions in braces which would not otherwise undergo brace expansion
to a lexically ordered list of all the characters. See Section 14.6 [Brace Expansion],
page 62.

CASE_GLOB <D>
Make globbing (filename generation) sensitive to case. Note that other uses of
patterns are always sensitive to case. If the option is unset, the presence of any
character which is special to filename generation will cause case-insensitive matching.
For example, cvs(/) can match the directory CVS owing to the presence of the
globbing flag (unless the option BARE_GLOB_QUAL is unset).

CASE_MATCH <D>
Make regular expressions using the zsh/regex module (including matches with =")
sensitive to case.

CASE_PATHS
If CASE_PATHS is not set (the default), CASE_GLOB affects the interpretation of every
path component, whenever a special character appears in any component. When
CASE_PATHS is set, file path components that do not contain special filename gen-
eration characters are always sensitive to case, thus restricting NO_CASE_GLOB to
components that contain globbing characters.

Note that if the filesystem itself is not sensitive to case, then CASE_PATHS has no
effect.

CSH_NULL_GLOB <C>
If a pattern for filename generation has no matches, delete the pattern from the
argument list; do not report an error unless all the patterns in a command have no
matches. Overrides NOMATCH.

EQUALS <Z>
Perform = filename expansion. (See Section 14.7 [Filename Expansion|, page 63.)

EXTENDED_GLOB
Treat the ‘#’, “~’ and ‘~’ characters as part of patterns for filename generation, etc.
(An initial unquoted ‘~’ always produces named directory expansion.)

FORCE_FLOAT
Constants in arithmetic evaluation will be treated as floating point even without the
use of a decimal point; the values of integer variables will be converted to floating
point when used in arithmetic expressions. Integers in any base will be converted.

GLOB (+F, ksh: +f) <D>
Perform filename generation (globbing). (See Section 14.8 [Filename Generation],
page 65.)

GLOB_ASSIGN <C>

If this option is set, filename generation (globbing) is performed on the right hand
side of scalar parameter assignments of the form ‘name=pattern (e.g. ‘foo=%’). If
the result has more than one word the parameter will become an array with those
words as arguments. This option is provided for backwards compatibility only:
globbing is always performed on the right hand side of array assignments of the
form ‘name=(value)’ (e.g. ‘foo=(*)’) and this form is recommended for clarity;
with this option set, it is not possible to predict whether the result will be an array
or a scalar.

GLOB_DOTS (-4)
Do not require a leading ‘.’ in a filename to be matched explicitly.

Chapter 16: Options 103

GLOB_STAR_SHORT
When this option is set and the default zsh-style globbing is in effect, the pattern
“xx/%’ can be abbreviated to ‘**’ and the pattern ‘**x/x’ can be abbreviated to
*x*x, Hence “**.c’ finds a file ending in .c in any subdirectory, and ‘***.c’ does
the same while also following symbolic links. A / immediately after the ‘**’ or ‘*xx*’
forces the pattern to be treated as the unabbreviated form.

GLOB_SUBST <C> <K> <S>
Treat any characters resulting from parameter expansion as being eligible for file-
name expansion and filename generation, and any characters resulting from com-
mand substitution as being eligible for filename generation. Braces (and commas in
between) do not become eligible for expansion.

HIST_SUBST_PATTERN
Substitutions using the :s and :& history modifiers are performed with pattern
matching instead of string matching. This occurs wherever history modifiers are
valid, including glob qualifiers and parameters. See Section 14.1.4 [Modifiers],
page 43.

IGNORE_BRACES (-I) <S>
Do not perform brace expansion. For historical reasons this also includes the effect
of the IGNORE_CLOSE_BRACES option.

IGNORE_CLOSE_BRACES

When neither this option nor IGNORE_BRACES is set, a sole close brace character
‘}’ is syntactically significant at any point on a command line. This has the effect
that no semicolon or newline is necessary before the brace terminating a function
or current shell construct. When either option is set, a closing brace is syntactically
significant only in command position. Unlike IGNORE_BRACES, this option does not
disable brace expansion.

For example, with both options unset a function may be defined in the following
fashion:

args() { echo $# }

while if either option is set, this does not work and something equivalent to the
following is required:

args() { echo $#; 1}

KSH_GLOB <K>
In pattern matching, the interpretation of parentheses is affected by a preceding ‘@,
7047 4?7 or ‘17, See Section 14.8 [Filename Generation], page 65.

MAGIC_EQUAL_SUBST
All unquoted arguments of the form ‘anything=expression’ appearing after the com-
mand name have filename expansion (that is, where expression has a leading ‘~’
or ‘=) performed on expression as if it were a parameter assignment. The argu-
ment is not otherwise treated specially; it is passed to the command as a single
argument, and not used as an actual parameter assignment. For example, in echo
foo="/bar:~/rod, both occurrences of ~ would be replaced. Note that this happens

anyway with typeset and similar statements.
This option respects the setting of the KSH_TYPESET option. In other words, if both
options are in effect, arguments looking like assignments will not undergo word
splitting.

MARK_DIRS (-8, ksh: -X)
Append a trailing ‘/’ to all directory names resulting from filename generation (glob-
bing).

Chapter 16: Options 104

MULTIBYTE <D>
Respect multibyte characters when found in strings. When this option is set, strings
are examined using the system library to determine how many bytes form a char-
acter, depending on the current locale. This affects the way characters are counted
in pattern matching, parameter values and various delimiters.

The option is on by default if the shell was compiled with MULTIBYTE_SUPPORT,;
otherwise it is off by default and has no effect if turned on.

If the option is off a single byte is always treated as a single character. This setting
is designed purely for examining strings known to contain raw bytes or other values
that may not be characters in the current locale. It is not necessary to unset the
option merely because the character set for the current locale does not contain
multibyte characters.

The option does not affect the shell’s editor, which always uses the locale to de-
termine multibyte characters. This is because the character set displayed by the
terminal emulator is independent of shell settings.

NOMATCH (+3) <C> <Z>
If a pattern for filename generation has no matches, print an error, instead of leaving
it unchanged in the argument list. This also applies to file expansion of an initial
(~ or 6="

NULL_GLOB (-G)
If a pattern for filename generation has no matches, delete the pattern from the
argument list instead of reporting an error. Overrides NOMATCH.

NUMERIC_GLOB_SORT
If numeric filenames are matched by a filename generation pattern, sort the filenames
numerically rather than lexicographically.

RC_EXPAND_PARAM (-P)
Array expansions of the form ‘foo${xx}bar’, where the parameter xx is set to (a
b ¢), are substituted with ‘fooabar foobbar foocbar’ instead of the default ‘fooa b
cbar’. Note that an empty array will therefore cause all arguments to be removed.

REMATCH_PCRE
If set, regular expression matching with the =~ operator will use Perl-Compatible
Regular Expressions from the PCRE library. (The zsh/pcre module must be avail-
able.) If not set, regular expressions will use the extended regexp syntax provided
by the system libraries.

SH_GLOB <K> <S>
Disables the special meaning of ‘(’, ‘|’, ‘)’ and ’<’ for globbing the result of param-
eter and command substitutions, and in some other places where the shell accepts
patterns. If SH_GLOB is set but KSH_GLOB is not, the shell allows the interpretation
of subshell expressions enclosed in parentheses in some cases where there is no space
before the opening parenthesis, e.g. ! (true) is interpreted as if there were a space
after the !. This option is set by default if zsh is invoked as sh or ksh.

UNSET (+u, ksh: +u) <K> <S> <Z>
Treat unset parameters as if they were empty when substituting, and as if they were
zero when reading their values in arithmetic expansion and arithmetic commands.
Otherwise they are treated as an error.

WARN_CREATE_GLOBAL
Print a warning message when a global parameter is created in a function by an
assignment or in math context. This often indicates that a parameter has not been

Chapter 16: Options 105

declared local when it should have been. Parameters explicitly declared global from
within a function using typeset -g do not cause a warning. Note that there is no
warning when a local parameter is assigned to in a nested function, which may also
indicate an error.

WARN_NESTED_VAR

Print a warning message when an existing parameter from an enclosing function
scope, or global, is set in a function by an assignment or in math context. Assign-
ment to shell special parameters does not cause a warning. This is the companion to
WARN_CREATE_GLOBAL as in this case the warning is only printed when a parameter
is not created. Where possible, use of typeset -g to set the parameter suppresses
the error, but note that this needs to be used every time the parameter is set. To
restrict the effect of this option to a single function scope, use ‘functions -W’.
For example, the following code produces a warning for the assignment inside the
function nested as that overrides the value within toplevel

toplevel () {
local foo="in fn"

nested
}
nested() {
foo="in nested"
}
setopt warn_nested_var
toplevel

16.2.4 History

APPEND_HISTORY <D>
If this is set, zsh sessions will append their history list to the history file, rather
than replace it. Thus, multiple parallel zsh sessions will all have the new entries
from their history lists added to the history file, in the order that they exit. The file
will still be periodically re-written to trim it when the number of lines grows 20%
beyond the value specified by $SAVEHIST (see also the HIST_SAVE_BY_COPY option).

BANG_HIST (+K) <C> <Z>
Perform textual history expansion, csh-style, treating the character ‘!’ specially.

EXTENDED_HISTORY <C>
Save each command’s beginning timestamp (in seconds since the epoch) and the
duration (in seconds) to the history file. The format of this prefixed data is:

‘: <beginning time>:<elapsed seconds>; <command>’.

HIST_ALLOW_CLOBBER
Add ‘|’ to output redirections in the history. This allows history references to
clobber files even when CLOBBER is unset.

HIST_BEEP <D>
Beep in ZLE when a widget attempts to access a history entry which isn’t there.

HIST_EXPIRE_DUPS_FIRST
If the internal history needs to be trimmed to add the current command line, setting
this option will cause the oldest history event that has a duplicate to be lost before
losing a unique event from the list. You should be sure to set the value of HISTSIZE
to a larger number than SAVEHIST in order to give you some room for the duplicated
events, otherwise this option will behave just like HIST_IGNORE_ALL_DUPS once the
history fills up with unique events.

Chapter 16: Options 106

HIST_FCNTL_LOCK
When writing out the history file, by default zsh uses ad-hoc file locking to avoid
known problems with locking on some operating systems. With this option locking
is done by means of the system’s fcntl call, where this method is available. On
recent operating systems this may provide better performance, in particular avoiding
history corruption when files are stored on NFS.

HIST_FIND_NO_DUPS
When searching for history entries in the line editor, do not display duplicates of a
line previously found, even if the duplicates are not contiguous.

HIST_IGNORE_ALL_DUPS
If a new command line being added to the history list duplicates an older one, the
older command is removed from the list (even if it is not the previous event).

HIST_IGNORE_DUPS(—h)
Do not enter command lines into the history list if they are duplicates of the previous
event.

HIST_IGNORE_SPACE (-g)
Remove command lines from the history list when the first character on the line is
a space, or when one of the expanded aliases contains a leading space. Only normal
aliases (not global or suffix aliases) have this behaviour. Note that the command
lingers in the internal history until the next command is entered before it vanishes,
allowing you to briefly reuse or edit the line. If you want to make it vanish right
away without entering another command, type a space and press return.

HIST_LEX_WORDS

By default, shell history that is read in from files is split into words on all white space.
This means that arguments with quoted whitespace are not correctly handled, with
the consequence that references to words in history lines that have been read from a
file may be inaccurate. When this option is set, words read in from a history file are
divided up in a similar fashion to normal shell command line handling. Although
this produces more accurately delimited words, if the size of the history file is large
this can be slow. Trial and error is necessary to decide.

HIST_NO_FUNCTIONS
Remove function definitions from the history list. Note that the function lingers in
the internal history until the next command is entered before it vanishes, allowing
you to briefly reuse or edit the definition.

HIST_NO_STORE
Remove the history (fc -1) command from the history list when invoked. Note
that the command lingers in the internal history until the next command is entered
before it vanishes, allowing you to briefly reuse or edit the line.

HIST_REDUCE_BLANKS
Remove superfluous blanks from each command line being added to the history list.

HIST_SAVE_BY_COPY <D>

When the history file is re-written, we normally write out a copy of the file named
$HISTFILE.new and then rename it over the old one. However, if this option is unset,
we instead truncate the old history file and write out the new version in-place. If
one of the history-appending options is enabled, this option only has an effect when
the enlarged history file needs to be re-written to trim it down to size. Disable this
only if you have special needs, as doing so makes it possible to lose history entries
if zsh gets interrupted during the save.

Chapter 16: Options 107

When writing out a copy of the history file, zsh preserves the old file’s permissions
and group information, but will refuse to write out a new file if it would change the
history file’s owner.

HIST_SAVE_NO_DUPS
When writing out the history file, older commands that duplicate newer ones are
omitted.

HIST_VERIFY
Whenever the user enters a line with history expansion, don’t execute the line di-
rectly; instead, perform history expansion and reload the line into the editing buffer.

INC_APPEND_HISTORY
This option works like APPEND_HISTORY except that new history lines are added
to the $HISTFILE incrementally (as soon as they are entered), rather than waiting
until the shell exits. The file will still be periodically re-written to trim it when the
number of lines grows 20% beyond the value specified by $SAVEHIST (see also the
HIST_SAVE_BY_COPY option).

INC_APPEND_HISTORY_TIME
This option is a variant of INC_APPEND_HISTORY in which, where possible, the history
entry is written out to the file after the command is finished, so that the time
taken by the command is recorded correctly in the history file in EXTENDED_HISTORY
format. This means that the history entry will not be available immediately from
other instances of the shell that are using the same history file.

This option is only useful if INC_APPEND_HISTORY and SHARE_HISTORY are turned
off. The three options should be considered mutually exclusive.

SHARE_HISTORY <K>
This option both imports new commands from the history file, and also causes your
typed commands to be appended to the history file (the latter is like specifying
INC_APPEND_HISTORY, which should be turned off if this option is in effect). The
history lines are also output with timestamps ala EXTENDED_HISTORY (which makes
it easier to find the spot where we left off reading the file after it gets re-written).

By default, history movement commands visit the imported lines as well as the local
lines, but you can toggle this on and off with the set-local-history zle binding. It is
also possible to create a zle widget that will make some commands ignore imported
commands, and some include them.

If you find that you want more control over when commands get im-
ported, you may wish to turn SHARE_HISTORY off, INC_APPEND_HISTORY or
INC_APPEND_HISTORY_TIME (see above) on, and then manually import commands
whenever you need them using ‘fc -RI’.

16.2.5 Initialisation

ALL_EXPORT (-a, ksh: -a)
All parameters subsequently defined are automatically exported.

GLOBAL_EXPORT <Z>
If this option is set, passing the -x flag to the builtins declare, float, integer,
readonly and typeset (but not local) will also set the -g flag; hence parameters
exported to the environment will not be made local to the enclosing function, unless
they were already or the flag +g is given explicitly. If the option is unset, exported
parameters will be made local in just the same way as any other parameter.

Chapter 16: Options 108

This option is set by default for backward compatibility; it is not recommended that
its behaviour be relied upon. Note that the builtin export always sets both the -x
and -g flags, and hence its effect extends beyond the scope of the enclosing function;
this is the most portable way to achieve this behaviour.

GLOBAL_RCS (+d) <D>
If this option is unset, the startup files /etc/zsh/zprofile, /etc/zsh/zshrc,
/etc/zsh/zlogin and /etc/zsh/zlogout will not be run. It can be disabled and
re-enabled at any time, including inside local startup files (.zshrc, etc.).

RCS (+f) <D>
After /etc/zsh/zshenv is sourced on startup, source the .zshenv,
/etc/zsh/zprofile, .zprofile, /etc/zsh/zshrc, .zshrc, /etc/zsh/zlogin,
.zlogin, and .zlogout files, as described in Chapter 5 [Files|, page 8. If this
option is unset, the /etc/zsh/zshenv file is still sourced, but any of the others will
not be; it can be set at any time to prevent the remaining startup files after the
currently executing one from being sourced.

16.2.6 Input/Output

ALTIASES <D>
Expand aliases.

CLOBBER (+C, ksh: +C) <D>
Allows >’ redirection to truncate existing files. Otherwise ‘>!” or ‘>|’ must be used
to truncate a file.
If the option is not set, and the option APPEND_CREATE is also not set, ‘>>!’ or ‘>>|’
must be used to create a file. If either option is set, ‘>>’ may be used.

CLOBBER_EMPTY
This option is only used if the option CLOBBER is not set: note that it is set by
default.

If this option is set, then regular files of zero length may be ovewritten (‘clobbered’).
Note that it is possible another process has written to the file between this test and
use of the file by the current process. This option should therefore not be used in
cases where files to be clobbered may be written to asynchronously.

CORRECT (-0)
Try to correct the spelling of commands. Note that, when the HASH_LIST_ALL
option is not set or when some directories in the path are not readable, this may
falsely report spelling errors the first time some commands are used.

The shell variable CORRECT_IGNORE may be set to a pattern to match words that
will never be offered as corrections.

CORRECT_ALL (-0)
Try to correct the spelling of all arguments in a line.

The shell variable CORRECT_IGNORE_FILE may be set to a pattern to match file
names that will never be offered as corrections.

DVORAK Use the Dvorak keyboard instead of the standard qwerty keyboard as a basis for
examining spelling mistakes for the CORRECT and CORRECT_ALL options and the
spell-word editor command.

FLOW_CONTROL <D>
If this option is unset, output flow control via start/stop characters (usually assigned
to ~S/~Q) is disabled in the shell’s editor.

Chapter 16: Options 109

IGNORE_EQF (-7)
Do not exit on end-of-file. Require the use of exit or logout instead. However, ten
consecutive EOFs will cause the shell to exit anyway, to avoid the shell hanging if
its tty goes away.

Also, if this option is set and the Zsh Line Editor is used, widgets implemented by
shell functions can be bound to EOF (normally Control-D) without printing the
normal warning message. This works only for normal widgets, not for completion
widgets.

INTERACTIVE_COMMENTS (—k) <K> <S>
Allow comments even in interactive shells.

HASH_CMDS <D>
Note the location of each command the first time it is executed. Subsequent invo-
cations of the same command will use the saved location, avoiding a path search. If
this option is unset, no path hashing is done at all. However, when CORRECT is set,
commands whose names do not appear in the functions or aliases hash tables are
hashed in order to avoid reporting them as spelling errors.

HASH_DIRS <D>
Whenever a command name is hashed, hash the directory containing it, as well as
all directories that occur earlier in the path. Has no effect if neither HASH_CMDS nor
CORRECT is set.

HASH_EXECUTABLES_ONLY
When hashing commands because of HASH_CMDS, check that the file to be hashed
is actually an executable. This option is unset by default as if the path contains
a large number of commands, or consists of many remote files, the additional tests
can take a long time. Trial and error is needed to show if this option is beneficial.

MAIL_WARNING (-U)
Print a warning message if a mail file has been accessed since the shell last checked.

PATH_DIRS (-Q)
Perform a path search even on command names with slashes in them. Thus if
‘/usr/local/bin’ is in the user’s path, and he or she types ‘X11/xinit’, the com-
mand ‘/usr/local/bin/X11/xinit’ will be executed (assuming it exists). Com-
mands explicitly beginning with ‘/’, ./’ or ‘. ./’ are not subject to the path search.
This also applies to the ‘.’ and source builtins.

Note that subdirectories of the current directory are always searched for executables
specified in this form. This takes place before any search indicated by this option,
and regardless of whether ‘.’ or the current directory appear in the command search
path.

PATH_SCRIPT <K> <S>
If this option is not set, a script passed as the first non-option argument to the shell
must contain the name of the file to open. If this option is set, and the script does
not specify a directory path, the script is looked for first in the current directory,
then in the command path. See Chapter 4 [Invocation], page 5.

PRINT_EIGHT_BIT
Print eight bit characters literally in completion lists, etc. This option is not nec-
essary if your system correctly returns the printability of eight bit characters (see

ctype(3)).

Chapter 16: Options 110

PRINT_EXIT_VALUE (—1)
Print the exit value of programs with non-zero exit status. This is only available at
the command line in interactive shells.

RC_QUOTES
Allow the character sequence ‘’’’ to signify a single quote within singly quoted
strings. Note this does not apply in quoted strings using the format $°...°, where a
backslashed single quote can be used.

RM_STAR_SILENT (-H) <K> <S>
Do not query the user before executing ‘rm *’ or ‘rm path/*’.

RM_STAR_WAIT
If querying the user before executing ‘rm *’ or ‘rm path/*’, first wait ten seconds
and ignore anything typed in that time. This avoids the problem of reflexively
answering ‘yes’ to the query when one didn’t really mean it. The wait and query
can always be avoided by expanding the ‘*’ in ZLE (with tab).

SHORT_LOOPS <C> <Z>
Allow the short forms of for, repeat, select, if, and function constructs.

SHORT_REPEAT
Allow the short form repeat as SHORT_LOOPS but without enabling it for the other
constructs.

SUN_KEYBOARD_HACK (-L)
If a line ends with a backquote, and there are an odd number of backquotes on
the line, ignore the trailing backquote. This is useful on some keyboards where the
return key is too small, and the backquote key lies annoyingly close to it. As an
alternative the variable KEYBOARD_HACK lets you choose the character to be removed.

16.2.7 Job Control

AUTO_CONTINUE
With this option set, stopped jobs that are removed from the job table with the
disown builtin command are automatically sent a CONT signal to make them running.

AUTO_RESUME (-W)
Treat single word simple commands without redirection as candidates for resumption
of an existing job.

BG_NICE (-6) <C> <Z>
Run all background jobs at a lower priority. This option is set by default.

CHECK_JOBS <Z>
Report the status of background and suspended jobs before exiting a shell with job
control; a second attempt to exit the shell will succeed. NO_CHECK_JOBS is best used
only in combination with NO_HUP, else such jobs will be killed automatically.

The check is omitted if the commands run from the previous command line included
a ‘jobs’ command, since it is assumed the user is aware that there are background
or suspended jobs. A ‘jobs’ command run from one of the hook functions defined
in the section ‘Special Functions’ in Chapter 9 [Functions], page 22, is not counted
for this purpose.

CHECK_RUNNING_JOBS <Z>
Check for both running and suspended jobs when CHECK_JOBS is enabled. When this

option is disabled, zsh checks only for suspended jobs, which matches the default
behavior of bash.

Chapter 16: Options 111

HUP <Z>

This option has no effect unless CHECK_JOBS is set.

Send the HUP signal to running jobs when the shell exits.

LONG_LIST_JOBS (-R)

Print job notifications in the long format by default.

MONITOR (-m, ksh: -m)

Allow job control. Set by default in interactive shells.

NOTIFY (-5, ksh: -b) <Z>

Report the status of background jobs immediately, rather than waiting until just
before printing a prompt.

POSIX_JOBS <K> <S>

This option makes job control more compliant with the POSIX standard.

When the option is not set, the MONITOR option is unset on entry to subshells, so
that job control is no longer active. When the option is set, the MONITOR option and
job control remain active in the subshell, but note that the subshell has no access
to jobs in the parent shell.

When the option is not set, jobs put in the background or foreground with bg or fg
are displayed with the same information that would be reported by jobs. When the
option is set, only the text is printed. The output from jobs itself is not affected
by the option.

When the option is not set, job information from the parent shell is saved for output
within a subshell (for example, within a pipeline). When the option is set, the output
of jobs is empty until a job is started within the subshell.

In previous versions of the shell, it was necessary to enable POSIX_JOBS in order for
the builtin command wait to return the status of background jobs that had already
exited. This is no longer the case.

16.2.8 Prompting

PROMPT_BANG <K>

If set, ‘!’ is treated specially in prompt expansion. See Chapter 13 [Prompt Expan-
sion], page 35.

PROMPT_CR (+V) <D>

Print a carriage return just before printing a prompt in the line editor. This is on
by default as multi-line editing is only possible if the editor knows where the start
of the line appears.

PROMPT_SP <D>

Attempt to preserve a partial line (i.e. a line that did not end with a newline)
that would otherwise be covered up by the command prompt due to the PROMPT_CR
option. This works by outputting some cursor-control characters, including a series
of spaces, that should make the terminal wrap to the next line when a partial line
is present (note that this is only successful if your terminal has automatic margins,
which is typical).

When a partial line is preserved, by default you will see an inverse+bold character
at the end of the partial line: a ‘)’ for a normal user or a ‘#” for root. If set, the
shell parameter PROMPT_EOL_MARK can be used to customize how the end of partial
lines are shown.

NOTE: if the PROMPT_CR option is not set, enabling this option will have no effect.
This option is on by default.

Chapter 16: Options 112

PROMPT_PERCENT <C> <Z>
If set, ‘% is treated specially in prompt expansion. See Chapter 13 [Prompt Expan-
sion], page 35.

PROMPT_SUBST <K> <S>
If set, parameter expansion, command substitution and arithmetic erpansion are
performed in prompts. Substitutions within prompts do not affect the command
status.

TRANSIENT_RPROMPT
Remove any right prompt from display when accepting a command line. This may
be useful with terminals with other cut/paste methods.

16.2.9 Scripts and Functions

ALIAS_FUNC_DEF <S>
By default, zsh does not allow the definition of functions using the ‘name ()’ syntax
if name was expanded as an alias: this causes an error. This is usually the desired
behaviour, as otherwise the combination of an alias and a function based on the
same definition can easily cause problems.

When this option is set, aliases can be used for defining functions.
For example, consider the following definitions as they might occur in a startup file.

alias foo=bar

foo() {
print This probably does not do what you expect.

¥

Here, foo is expanded as an alias to bar before the () is encountered, so the function
defined would be named bar. By default this is instead an error in native mode.
Note that quoting any part of the function name, or using the keyword function,
avoids the problem, so is recommended when the function name can also be an alias.

C_BASES Output hexadecimal numbers in the standard C format, for example ‘0xFF’ instead
of the usual ‘16#FF’. If the option OCTAL_ZERQES is also set (it is not by default),
octal numbers will be treated similarly and hence appear as ‘077’ instead of ‘8#77’.
This option has no effect on the choice of the output base, nor on the output of bases
other than hexadecimal and octal. Note that these formats will be understood on
input irrespective of the setting of C_BASES.

C_PRECEDENCES
This alters the precedence of arithmetic operators to be more like C and other pro-
gramming languages; Chapter 11 [Arithmetic Evaluation], page 29, has an explicit
list.

DEBUG_BEFORE_CMD <D>
Run the DEBUG trap before each command; otherwise it is run after each command.
Setting this option mimics the behaviour of ksh 93; with the option unset the be-
haviour is that of ksh 88.

ERR_EXIT (-e, ksh: -e)
If a command has a non-zero exit status, execute the ZERR trap, if set, and exit.
This is disabled while running initialization scripts.
The behaviour is also disabled inside DEBUG traps. In this case the option is handled
specially: it is unset on entry to the trap. If the option DEBUG_BEFORE_CMD is set,
as it is by default, and the option ERR_EXIT is found to have been set on exit, then

Chapter 16: Options 113

the command for which the DEBUG trap is being executed is skipped. The option is
restored after the trap exits.

Non-zero status in a command list containing && or | | is ignored for commands not
at the end of the list. Hence

false && true
does not trigger exit.

Exiting due to ERR_EXIT has certain interactions with asynchronous jobs noted in
Chapter 10 [Jobs & Signals], page 27.

ERR_RETURN
If a command has a non-zero exit status, return immediately from the enclosing
function. The logic is similar to that for ERR_EXIT, except that an implicit return
statement is executed instead of an exit. This will trigger an exit at the outermost
level of a non-interactive script.

Normally this option inherits the behaviour of ERR_EXIT that code followed by ‘&&’
‘|1’ does not trigger a return. Hence in the following:

summit || true
no return is forced as the combined effect always has a zero return status.

Note. however, that if summit in the above example is itself a function, code inside
it is considered separately: it may force a return from summit (assuming the option
remains set within summit), but not from the enclosing context. This behaviour is
different from ERR_EXIT which is unaffected by function scope.

EVAL_LINENO <Z>

If set, line numbers of expressions evaluated using the builtin eval are tracked
separately of the enclosing environment. This applies both to the parameter LINENO
and the line number output by the prompt escape %i. If the option is set, the prompt
escape %N will output the string ‘(eval)’ instead of the script or function name as
an indication. (The two prompt escapes are typically used in the parameter PS4 to
be output when the option XTRACE is set.) If EVAL_LINENO is unset, the line number
of the surrounding script or function is retained during the evaluation.

EXEC (+n, ksh: +n) <D>
Do execute commands. Without this option, commands are read and checked for
syntax errors, but not executed. This option cannot be turned off in an interactive
shell, except when ‘-n’ is supplied to the shell at startup.

FUNCTION_ARGZERO <C> <Z>
When executing a shell function or sourcing a script, set $0 temporarily to the name
of the function/script. Note that toggling FUNCTION_ARGZERO from on to off (or off
to on) does not change the current value of $0. Only the state upon entry to the
function or script has an effect. Compare POSIX_ARGZERO.

LOCAL_LOQOPS
When this option is not set, the effect of break and continue commands may
propagate outside function scope, affecting loops in calling functions. When the
option is set in a calling function, a break or a continue that is not caught within a
called function (regardless of the setting of the option within that function) produces
a warning and the effect is cancelled.

LOCAL_OPTIONS <K>
If this option is set at the point of return from a shell function, most options (includ-
ing this one) which were in force upon entry to the function are restored; options

Chapter 16: Options 114

that are not restored are PRIVILEGED and RESTRICTED. Otherwise, only this option,
and the LOCAL_LOOPS, XTRACE and PRINT_EXIT_VALUE options are restored. Hence
if this is explicitly unset by a shell function the other options in force at the point of
return will remain so. A shell function can also guarantee itself a known shell config-
uration with a formulation like ‘emulate -L zsh’; the -L activates LOCAL_OPTIONS.

LOCAL_PATTERNS

If this option is set at the point of return from a shell function, the state of pattern
disables, as set with the builtin command ‘disable -p’, is restored to what it was
when the function was entered. The behaviour of this option is similar to the effect of
LOCAL_OPTIONS on options; hence ‘emulate -L sh’ (or indeed any other emulation
with the -L option) activates LOCAL_PATTERNS.

LOCAL_TRAPS <K>

If this option is set when a signal trap is set inside a function, then the previous
status of the trap for that signal will be restored when the function exits. Note that
this option must be set prior to altering the trap behaviour in a function; unlike
LOCAL_OPTIONS, the value on exit from the function is irrelevant. However, it does
not need to be set before any global trap for that to be correctly restored by a
function. For example,

unsetopt localtraps
trap - INT
fn() { setopt localtraps; trap ’’ INT; sleep 3; }

will restore normal handling of SIGINT after the function exits.

MULTI_FUNC_DEF <Z>

Allow definitions of multiple functions at once in the form ‘fn1 fn2...()’; if the
option is not set, this causes a parse error. Definition of multiple functions with
the function keyword is always allowed. Multiple function definitions are not often
used and can cause obscure errors.

MULTIOS <Z>

Perform implicit tees or cats when multiple redirections are attempted (see
Chapter 7 [Redirection], page 17).

OCTAL_ZERQES <S>

PIPE_FAIL

Interpret any integer constant beginning with a 0 as octal, per IEEE Std 1003.2-
1992 (ISO 9945-2:1993). This is not enabled by default as it causes problems with
parsing of, for example, date and time strings with leading zeroes.

Sequences of digits indicating a numeric base such as the ‘08’ component in ‘08#77’
are always interpreted as decimal, regardless of leading zeroes.

By default, when a pipeline exits the exit status recorded by the shell and returned
by the shell variable $7 reflects that of the rightmost element of a pipeline. If this
option is set, the exit status instead reflects the status of the rightmost element of
the pipeline that was non-zero, or zero if all elements exited with zero status.

SOURCE_TRACE

If set, zsh will print an informational message announcing the name of each file it
loads. The format of the output is similar to that for the XTRACE option, with the
message <sourcetrace>. A file may be loaded by the shell itself when it starts up
and shuts down (Startup/Shutdown Files) or by the use of the ‘source’ and ‘dot’
builtin commands.

Chapter 16: Options 115

TYPESET_SILENT
If this is unset, executing any of the ‘typeset’ family of commands with no options
and a list of parameters that have no values to be assigned but already exist will
display the value of the parameter. If the option is set, they will only be shown when
parameters are selected with the ‘-m’ option. The option ‘-p’ is available whether
or not the option is set.

¢

TYPESET_TO_UNSET <K> <S>
When declaring a new parameter with any of the ‘typeset’ family of related com-
mands, the parameter remains unset unless and until a value is explicitly assigned
to it, either in the ‘typeset’ command itself or as a later assignment statement.

VERBOSE (-v, ksh: -v)
Print shell input lines as they are read.

XTRACE (-x, ksh: -x)
Print commands and their arguments as they are executed. The output is preceded
by the value of $PS4, formatted as described in Chapter 13 [Prompt Expansion],
page 35.

16.2.10 Shell Emulation

APPEND_CREATE <K> <S>
This option only applies when NO_CLOBBER (-C) is in effect.

If this option is not set, the shell will report an error when a append redirection
(>>) is used on a file that does not already exists (the traditional zsh behaviour of
NO_CLOBBER). If the option is set, no error is reported (POSIX behaviour).

BASH_REMATCH

When set, matches performed with the =~ operator will set the BASH_REMATCH array
variable, instead of the default MATCH and match variables. The first element of the
BASH_REMATCH array will contain the entire matched text and subsequent elements
will contain extracted substrings. This option makes more sense when KSH_ARRAYS
is also set, so that the entire matched portion is stored at index 0 and the first
substring is at index 1. Without this option, the MATCH variable contains the entire
matched text and the match array variable contains substrings.

BSD_ECHO <S>
Make the echo builtin compatible with the BSD echo(1) command. This disables
backslashed escape sequences in echo strings unless the -e option is specified.

CONTINUE_ON_ERROR
If a fatal error is encountered (see Section 6.6 [Errors|, page 15), and the code is
running in a script, the shell will resume execution at the next statement in the
script at the top level, in other words outside all functions or shell constructs such
as loops and conditions. This mimics the behaviour of interactive shells, where the
shell returns to the line editor to read a new command; it was the normal behaviour
in versions of zsh before 5.0.1.

CSH_JUNKIE_HISTORY <C>
A history reference without an event specifier will always refer to the previous com-
mand. Without this option, such a history reference refers to the same event as the
previous history reference on the current command line, defaulting to the previous
command.

CSH_JUNKIE_LOOPS <C>
Allow loop bodies to take the form ‘list; end’ instead of ‘do list; done’.

Chapter 16: Options 116

CSH_JUNKIE_QUOTES <C>
Changes the rules for single- and double-quoted text to match that of csh. These
require that embedded newlines be preceded by a backslash; unescaped newlines will
cause an error message. In double-quoted strings, it is made impossible to escape
‘¢, 7 or ‘" (and ‘\’ itself no longer needs escaping). Command substitutions are
only expanded once, and cannot be nested.

CSH_NULLCMD <C>
Do not use the values of NULLCMD and READNULLCMD when running redirections with
no command. This make such redirections fail (see Chapter 7 [Redirection], page 17).

KSH_ARRAYS <K> <S>
Emulate ksh array handling as closely as possible. If this option is set, array elements
are numbered from zero, an array parameter without subscript refers to the first
element instead of the whole array, and braces are required to delimit a subscript
(‘${path[2]}’ rather than just ‘$path[2]’) or to apply modifiers to any parameter
(‘¢{PWD:h}’ rather than ‘$PWD:h’).

KSH_AUTOLOAD <K> <S>
Emulate ksh function autoloading. This means that when a function is autoloaded,
the corresponding file is merely executed, and must define the function itself. (By
default, the function is defined to the contents of the file. However, the most common
ksh-style case - of the file containing only a simple definition of the function - is
always handled in the ksh-compatible manner.)

KSH_OPTION_PRINT <K>
Alters the way options settings are printed: instead of separate lists of set and unset
options, all options are shown, marked ‘on’ if they are in the non-default state, ‘off’
otherwise.

KSH_TYPESET
This option is now obsolete: a better appropximation to the behaviour of other shells
is obtained with the reserved word interface to declare, export, float, integer,
local, readonly and typeset. Note that the option is only applied when the
reserved word interface is not in use.

Alters the way arguments to the typeset family of commands, including declare,
export, float, integer, local and readonly, are processed. Without this option,
zsh will perform normal word splitting after command and parameter expansion in
arguments of an assignment; with it, word splitting does not take place in those
cases.

KSH_ZERO_SUBSCRIPT

Treat use of a subscript of value zero in array or string expressions as a reference
to the first element, i.e. the element that usually has the subscript 1. Ignored if
KSH_ARRAYS is also set.
If neither this option nor KSH_ARRAYS is set, accesses to an element of an array or
string with subscript zero return an empty element or string, while attempts to set
element zero of an array or string are treated as an error. However, attempts to set
an otherwise valid subscript range that includes zero will succeed. For example, if
KSH_ZERO_SUBSCRIPT is not set,

array[0]=(element)
is an error, while

array[0,1]=(element)

is not and will replace the first element of the array.

Chapter 16: Options 117

This option is for compatibility with older versions of the shell and is not recom-
mended in new code.

POSIX_ALIASES <K> <S>
When this option is set, reserved words are not candidates for alias expansion: it is
still possible to declare any of them as an alias, but the alias will never be expanded.
Reserved words are described in Section 6.5 [Reserved Words], page 15.

Alias expansion takes place while text is being read; hence when this option is set it
does not take effect until the end of any function or other piece of shell code parsed
as one unit. Note this may cause differences from other shells even when the option
is in effect. For example, when running a command with ‘zsh -c’, or even ‘zsh -o
posixaliases -c’, the entire command argument is parsed as one unit, so aliases
defined within the argument are not available even in later lines. If in doubt, avoid
use of aliases in non-interactive code.

POSIX_ARGZERO
This option may be used to temporarily disable FUNCTION_ARGZERO and thereby
restore the value of $0 to the name used to invoke the shell (or as set by the
-c¢ command line option). For compatibility with previous versions of the shell,
emulations use NO_FUNCTION_ARGZERO instead of POSIX_ARGZERO, which may result
in unexpected scoping of $0 if the emulation mode is changed inside a function or
script. To avoid this, explicitly enable POSIX_ARGZERO in the emulate command:

emulate sh -o POSIX_ARGZERO
Note that NO_POSIX_ARGZERO has no effect unless FUNCTION_ARGZERO was already
enabled upon entry to the function or script.

POSIX_BUILTINS <K> <S>
When this option is set the command builtin can be used to execute shell builtin com-
mands. Parameter assignments specified before shell functions and special builtins
are kept after the command completes unless the special builtin is prefixed with the

command builtin. Special builtins are ., :, break, continue, declare, eval, exit,
export, integer, local, readonly, return, set, shift, source, times, trap and
unset.

In addition, various error conditions associated with the above builtins or exec
cause a non-interactive shell to exit and an interactive shell to return to its top-level
processing.

Furthermore, functions and shell builtins are not executed after an exec prefix; the
command to be executed must be an external command found in the path.

Furthermore, the getopts builtin behaves in a POSIX-compatible fashion in that the
associated variable OPTIND is not made local to functions, and its value is calculated
differently to match other shells.

Moreover, the warning and special exit code from [[-o non_existent_option]]
are suppressed.

POSIX_IDENTIFIERS <K> <S>
When this option is set, only the ASCII characters a to z, A to Z, 0 to 9 and _ may
be used in identifiers (names of shell parameters and modules).

In addition, setting this option limits the effect of parameter substitution with no
braces, so that the expression $# is treated as the parameter $# even if followed
by a valid parameter name. When it is unset, zsh allows expressions of the form
$#name to refer to the length of $name, even for special variables, for example in
expressions such as $#- and $#*.

Chapter 16: Options 118

Another difference is that with the option set assignment to an unset variable in
arithmetic context causes the variable to be created as a scalar rather than a numeric
type. So after ‘unset t; ((t = 3))’. without POSIX_IDENTIFIERS set t has
integer type, while with it set it has scalar type.

When the option is unset and multibyte character support is enabled (i.e. it is
compiled in and the option MULTIBYTE is set), then additionally any alphanumeric
characters in the local character set may be used in identifiers. Note that scripts
and functions written with this feature are not portable, and also that both options
must be set before the script or function is parsed; setting them during execution is
not sufficient as the syntax variable=value has already been parsed as a command
rather than an assignment.

If multibyte character support is not compiled into the shell this option is ignored;
all octets with the top bit set may be used in identifiers. This is non-standard but
is the traditional zsh behaviour.

POSIX_STRINGS <K> <S>
This option affects processing of quoted strings. Currently it only affects the be-

haviour of null characters, i.e. character 0 in the portable character set correspond-
ing to US ASCII.

When this option is not set, null characters embedded within strings of the form
$’...7 are treated as ordinary characters. The entire string is maintained within the
shell and output to files where necessary, although owing to restrictions of the library
interface the string is truncated at the null character in file names, environment
variables, or in arguments to external programs.

When this option is set, the $°...° expression is truncated at the null character.
Note that remaining parts of the same string beyond the termination of the quotes
are not truncated.

For example, the command line argument a$’b\0c’d is treated with the option off
as the characters a, b, null, c, d, and with the option on as the characters a, b, d.

POSIX_TRAPS <K> <S>
When this option is set, the usual zsh behaviour of executing traps for EXIT on exit
from shell functions is suppressed. In that case, manipulating EXIT traps always
alters the global trap for exiting the shell; the LOCAL_TRAPS option is ignored for
the EXIT trap.

Also, a return statement executed in a trap with no argument passes back from
the function the value from the surrounding context, not from code executed within
the trap.

Furthermore, if a trap is set to be ignored, this state persists when a subshell is
entered. Without the option, the trap would be reset to its default state at this
point.

SH_FILE_EXPANSION <K> <S>
Perform filename expansion (e.g., ~ expansion) before parameter expansion, com-
mand substitution, arithmetic expansion and brace expansion. If this option is
unset, it is performed after brace expansion, so things like ‘“$USERNAME’ and
‘““{pfalstad,rc} will work.

SH_NULLCMD <K> <S>
Do not use the values of NULLCMD and READNULLCMD when doing redirections, use ‘:’
instead (see Chapter 7 [Redirection], page 17).

Chapter 16: Options 119

SH_OPTION_LETTERS <K> <S>
If this option is set the shell tries to interpret single letter options (which are used
with set and setopt) like ksh does. This also affects the value of the - special
parameter.

SH_WORD_SPLIT (-y) <K> <S>
Causes field splitting to be performed on unquoted parameter expansions. Note
that this option has nothing to do with word splitting. (See Section 14.3 [Parameter
Expansion], page 47.)

TRAPS_ASYNC
While waiting for a program to exit, handle signals and run traps immediately.
Otherwise the trap is run after a child process has exited. Note this does not affect
the point at which traps are run for any case other than when the shell is waiting
for a child process.

16.2.11 Shell State

INTERACTIVE (-i, ksh: -i)
This is an interactive shell. This option is set upon initialisation if the standard input
is a tty and commands are being read from standard input. (See the discussion of
SHIN_STDIN.) This heuristic may be overridden by specifying a state for this option
on the command line. The value of this option can only be changed via flags supplied
at invocation of the shell. It cannot be changed once zsh is running.

LOGIN (-1, ksh: -1)
This is a login shell. If this option is not explicitly set, the shell becomes a login
shell if the first character of the argv[0] passed to the shell is a ‘-’

PRIVILEGED (-p, ksh: -p)
Turn on privileged mode. Typically this is used when script is to be run with
elevated privileges. This should be done as follows directly with the —-p option to
zsh so that it takes effect during startup.

#!/bin/zsh -p

The option is enabled automatically on startup if the effective user (group) ID is
not equal to the real user (group) ID. In this case, turning the option off causes the
effective user and group IDs to be set to the real user and group IDs. Be aware
that if that fails the shell may be running with different IDs than was intended so
a script should check for failure and act accordingly, for example:
unsetopt privileged || exit

The PRIVILEGED option disables sourcing user startup files. If zsh is invoked as ‘sh’
or ‘ksh’ with this option set, /etc/suid_profile is sourced (after /etc/profile
on interactive shells). Sourcing ~/.profile is disabled and the contents of the ENV
variable is ignored. This option cannot be changed using the -m option of setopt

and unsetopt, and changing it inside a function always changes it globally regardless
of the LOCAL_OPTIONS option.

RESTRICTED (-r)
Enables restricted mode. This option cannot be changed using unsetopt, and set-
ting it inside a function always changes it globally regardless of the LOCAL_OPTIONS
option. See Section 4.3 [Restricted Shell], page 7.

SHIN_STDIN (-s, ksh: -s)
Commands are being read from the standard input. Commands are read from
standard input if no command is specified with -c and no file of commands is

Chapter 16: Options 120

specified. If SHIN_STDIN is set explicitly on the command line, any argument that
would otherwise have been taken as a file to run will instead be treated as a normal
positional parameter. Note that setting or unsetting this option on the command
line does not necessarily affect the state the option will have while the shell is running
- that is purely an indicator of whether or not commands are actually being read
from standard input. The value of this option can only be changed via flags supplied
at invocation of the shell. It cannot be changed once zsh is running.

SINGLE_COMMAND (-t, ksh: -t)

If the shell is reading from standard input, it exits after a single command has
been executed. This also makes the shell non-interactive, unless the INTERACTIVE
option is explicitly set on the command line. The value of this option can only be
changed via flags supplied at invocation of the shell. It cannot be changed once zsh
is running.

16.2.12 Zle

BEEP (+B) <D>

Beep on error in ZLE.

COMBINING_CHARS

EMACS

OVERSTRIKE

Assume that the terminal displays combining characters correctly. Specifically, if
a base alphanumeric character is followed by one or more zero-width punctuation
characters, assume that the zero-width characters will be displayed as modifications
to the base character within the same width. Not all terminals handle this. If
this option is not set, zero-width characters are displayed separately with special
mark-up.

If this option is set, the pattern test [[:WORD:]] matches a zero-width punctuation
character on the assumption that it will be used as part of a word in combina-
tion with a word character. Otherwise the base shell does not handle combining
characters specially.

If ZLE is loaded, turning on this option has the equivalent effect of ‘bindkey -
e’. In addition, the VI option is unset. Turning it off has no effect. The option
setting is not guaranteed to reflect the current keymap. This option is provided for

compatibility; bindkey is the recommended interface.

Start up the line editor in overstrike mode.

SINGLE_LINE_ZLE (-M) <K>

VI

ZLE (-Z)

Use single-line command line editing instead of multi-line.

Note that although this is on by default in ksh emulation it only provides superficial
compatibility with the ksh line editor and reduces the effectiveness of the zsh line
editor. As it has no effect on shell syntax, many users may wish to disable this
option when using ksh emulation interactively.

If ZLE is loaded, turning on this option has the equivalent effect of ‘bindkey -v’.
In addition, the EMACS option is unset. Turning it off has no effect. The option
setting is not guaranteed to reflect the current keymap. This option is provided for
compatibility; bindkey is the recommended interface.

Use the zsh line editor. Set by default in interactive shells connected to a terminal.

Chapter 16: Options 121

16.3 Option Aliases

Some options have alternative names. These aliases are never used for output, but can be used
just like normal option names when specifying options to the shell.

BRACE_EXPAND
NO_IGNORE_BRACES (ksh and bash compatibility)

DOT_GLOB GLOB_DOTS (bash compatibility)
HASH_ALL HASH_CMDS (bash compatibility)

HIST_APPEND
APPEND_HISTORY (bash compatibility)

HIST_EXPAND
BANG_HIST (bash compatibility)

LOG NO_HIST_NO_FUNCTIONS (ksh compatibility)

MATIL_WARN
MAIL_WARNING (bash compatibility)

ONE_CMD SINGLE_COMMAND (bash compatibility)
PHYSICAL CHASE_LINKS (ksh and bash compatibility)

PROMPT_VARS
PROMPT_SUBST (bash compatibility)

STDIN SHIN_STDIN (ksh compatibility)

TRACK_ALL
HASH_CMDS (ksh compatibility)

16.4 Single Letter Options

16.4.1 Default set

-0 CORRECT

-1 PRINT_EXIT_VALUE
-2 NO_BAD_PATTERN
-3 NO_NOMATCH

-4 GLOB_DOTS

-5 NOTIFY

-6 BG_NICE

=7 IGNORE_EOF

-8 MARK_DIRS

-9 AUTO_LIST

-B NO_BEEP

-C NO_CLOBBER

-D PUSHD_TO_HOME

Chapter 16: Options

-E PUSHD_SILENT

-F NO_GLOB

-G NULL_GLOB

-H RM_STAR_SILENT

-I IGNORE_BRACES

-J AUTO-CD

-K NO_BANG_HIST

-L SUN_KEYBOARD_HACK
-M SINGLE_LINE_ZLE

-N AUTO_PUSHD

-0 CORRECT_ALL

-P RC_EXPAND_PARAM
-Q PATH_DIRS

-R LONG_LIST_JOBS

-S REC_EXACT

-T CDABLE_VARS

-U MAIL_WARNING

-V NO_PROMPT_CR

-W AUTO_RESUME

-X LIST_TYPES

-Y MENU_COMPLETE
-Z ZLE

-a ALL_EXPORT

-e ERR_EXIT

-f NO_RCS

-g HIST_IGNORE_SPACE
-h HIST_IGNORE_DUPS
-i INTERACTIVE

-k INTERACTIVE_COMMENTS
-1 LOGIN

-m MONITOR

-n NO_EXEC

-p PRIVILEGED

-r RESTRICTED

-s SHIN_STDIN

-t SINGLE_.COMMAND

122

Chapter 16: Options

NO_UNSET
VERBOSE
CHASE_LINKS
XTRACE
SH_-WORD_SPLIT

16.4.2 sh/ksh emulation set

—-m

-n

P

-r

NO_CLOBBER
TRAPS_ASYNC
MARK_DIRS
ALL_EXPORT
NOTIFY
ERR_EXIT
NO_GLOB
INTERACTIVE
LOGIN
MONITOR
NO_EXEC
PRIVILEGED
RESTRICTED
SHIN_STDIN
SINGLE_.COMMAND
NO_UNSET
VERBOSE
XTRACE

16.4.3 Also note

Used by set for setting arrays

Used on the command line to specify end of option processing
Used on the command line to specify a single command

Used by setopt for pattern-matching option setting

Used in all places to allow use of long option names

Used by set to sort positional parameters

123

Chapter 17: Shell Builtin Commands 124

17 Shell Builtin Commands

Some shell builtin commands take options as described in individual entries; these are often
referred to in the list below as ‘flags’ to avoid confusion with shell options, which may also
have an effect on the behaviour of builtin commands. In this introductory section, ‘option’
always has the meaning of an option to a command that should be familiar to most command
line users.

Typically, options are single letters preceded by a hyphen (-). Options that take an argument
accept it either immediately following the option letter or after white space, for example ‘print
-C3 {1..9} or ‘print -C 3 {1..9} are equivalent. Arguments to options are not the same
as arguments to the command; the documentation indicates which is which. Options that do

not take an argument may be combined in a single word, for example ‘print -rca -- *’ and
‘print -r -c -a -- %’ are equivalent.
Some shell builtin commands also take options that begin with ‘+’ instead of ‘=’. The list below

makes clear which commands these are.

Options (together with their individual arguments, if any) must appear in a group before any
non-option arguments; once the first non-option argument has been found, option processing is
terminated.

All builtin commands other than ‘echo’ and precommand modifiers, even those that have no
options, can be given the argument ‘-’ to terminate option processing. This indicates that the
following words are non-option arguments, but is otherwise ignored. This is useful in cases where
arguments to the command may begin with ‘~’. For historical reasons, most builtin commands
(including ‘echo’) also recognize a single ‘-’ in a separate word for this purpose; note that this
is less standard and use of ‘==’ is recommended.

- simple command
See Section 6.2 [Precommand Modifiers], page 10.

. file [arg ...]
Read commands from file and execute them in the current shell environment.

If file does not contain a slash, or if PATH_DIRS is set, the shell looks in the compo-
nents of $path to find the directory containing file. Files in the current directory are
not read unless ‘.’ appears somewhere in $path. If a file named ‘file.zwc’ is found,
is newer than file, and is the compiled form (created with the zcompile builtin) of
file, then commands are read from that file instead of file.

If any arguments arg are given, they become the positional parameters; the old
positional parameters are restored when the file is done executing. However, if no
arguments are given, the positional parameters remain those of the calling context,
and no restoring is done.

If file was not found the return status is 127; if file was found but contained a syntax
error the return status is 126; else the return status is the exit status of the last
command executed.

: [arg ... |
This command does nothing, although normal argument expansions is performed
which may have effects on shell parameters. A zero exit status is returned.

alias [{+|-}gmrsL | [name[=value] ...]
For each name with a corresponding value, define an alias with that value. A trailing
space in value causes the next word to be checked for alias expansion. If the -g flag
is present, define a global alias; global aliases are expanded even if they do not occur
in command position:

Chapter 17:

Shell Builtin Commands 125

% perldoc --help 2>&1 | grep ’built-in functions’
-f Search Perl built-in functions

% alias -g HG=’--help 2>&1 | grep’

% perldoc HG ’built-in functions’
-f Search Perl built-in functiomns

If the -s flag is present, define a suffix alias: if the command word on a command
line is in the form ‘text.name’, where text is any non-empty string, it is replaced
by the text ‘value text.name’. Note that name is treated as a literal string, not a
pattern. A trailing space in value is not special in this case. For example,
alias -s ps=’gv —-’

will cause the command ‘*.ps’ to be expanded to ‘gv —— *.ps’. As alias expansion
is carried out earlier than globbing, the ‘*.ps’ will then be expanded. Suffix aliases
constitute a different name space from other aliases (so in the above example it is
still possible to create an alias for the command ps) and the two sets are never listed
together.

For each name with no value, print the value of name, if any. With no arguments,
print all currently defined aliases other than suffix aliases. If the -m flag is given
the arguments are taken as patterns (they should be quoted to preserve them from
being interpreted as glob patterns), and the aliases matching these patterns are
printed. When printing aliases and one of the -g, -r or -s flags is present, restrict
the printing to global, regular or suffix aliases, respectively; a regular alias is one
which is neither a global nor a suffix alias. Using ‘+” instead of ‘=’, or ending the
option list with a single ‘+’, prevents the values of the aliases from being printed.

If the -L flag is present, then print each alias in a manner suitable for putting in
a startup script. The exit status is nonzero if a name (with no value) is given for
which no alias has been defined.

For more on aliases, include common problems, see Section 6.8 [Aliasing], page 16.

autoload [{+|-}RTUXdkmrtWz | [-w | [name ...]

See the section ‘Autoloading Functions’ in Chapter 9 [Functions|, page 22, for full
details. The fpath parameter will be searched to find the function definition when
the function is first referenced.

If name consists of an absolute path, the function is defined to load from the file
given (searching as usual for dump files in the given location). The name of the
function is the basename (non-directory part) of the file. It is normally an error if
the function is not found in the given location; however, if the option -d is given,
searching for the function defaults to $fpath. If a function is loaded by absolute
path, any functions loaded from it that are marked for autoload without an absolute
path have the load path of the parent function temporarily prepended to $fpath.

If the option -r or -R is given, the function is searched for immediately and the
location is recorded internally for use when the function is executed; a relative path
is expanded using the value of $PWD. This protects against a change to $fpath
after the call to autoload. With -r, if the function is not found, it is silently
left unresolved until execution; with -R, an error message is printed and command
processing aborted immediately the search fails, i.e. at the autoload command
rather than at function execution..

The flag -X may be used only inside a shell function. It causes the calling function
to be marked for autoloading and then immediately loaded and executed, with the
current array of positional parameters as arguments. This replaces the previous
definition of the function. If no function definition is found, an error is printed
and the function remains undefined and marked for autoloading. If an argument is

Chapter 17: Shell Builtin Commands 126

bg [job ... |
job ...

bindkey
break [n |

given, it is used as a directory (i.e. it does not include the name of the function)
in which the function is to be found; this may be combined with the -d option to
allow the function search to default to $fpath if it is not in the given location.

The flag +X attempts to load each name as an autoloaded function, but does not
execute it. The exit status is zero (success) if the function was not previously defined
and a definition for it was found. This does not replace any existing definition of the
function. The exit status is nonzero (failure) if the function was already defined or
when no definition was found. In the latter case the function remains undefined and
marked for autoloading. If ksh-style autoloading is enabled, the function created
will contain the contents of the file plus a call to the function itself appended to it,
thus giving normal ksh autoloading behaviour on the first call to the function. If
the -m flag is also given each name is treated as a pattern and all functions already
marked for autoload that match the pattern are loaded.

With the -t flag, turn on execution tracing; with -T, turn on execution tracing only
for the current function, turning it off on entry to any called functions that do not
also have tracing enabled.

With the -U flag, alias expansion is suppressed when the function is loaded.

With the -w flag, the names are taken as names of files compiled with the zcompile
builtin, and all functions defined in them are marked for autoloading.

The flags -z and -k mark the function to be autoloaded using the zsh or ksh style, as
if the option KSH_AUTOLOAD were unset or were set, respectively. The flags override
the setting of the option at the time the function is loaded.

Note that the autoload command makes no attempt to ensure the shell options set
during the loading or execution of the file have any particular value. For this, the
emulate command can be used:

emulate zsh -c ’autoload -Uz func’

arranges that when func is loaded the shell is in native zsh emulation, and this
emulation is also applied when func is run.

Some of the functions of autoload are also provided by functions -u or functions
-U, but autoload is a more comprehensive interface.

Put each specified job in the background, or the current job if none is specified.

See Section 18.3 [Zle Builtins], page 165.

Exit from an enclosing for, while, until, select or repeat loop. If an arithmetic
expression n is specified, then break n levels instead of just one.

builtin name [args ...]

bye

cap

cd |
cd [
cd [

Executes the builtin name, with the given args.
Same as exit.

See Section 22.3 [The zsh/cap Module], page 296.

~gstP | [arg |
-gsLP | old new
~gsLP | {+|-}n

Change the current directory. In the first form, change the current directory to arg,
or to the value of $HOME if arg is not specified. If arg is ‘=’, change to the previous
directory.

Chapter 17: Shell Builtin Commands 127

chdir

clone

Otherwise, if arg begins with a slash, attempt to change to the directory given by
arg.

If arg does not begin with a slash, the behaviour depends on whether the current
directory ‘.’ occurs in the list of directories contained in the shell parameter cdpath.
If it does not, first attempt to change to the directory arg under the current directory,
and if that fails but cdpath is set and contains at least one element attempt to change
to the directory arg under each component of cdpath in turn until successful. If ‘.’
occurs in cdpath, then cdpath is searched strictly in order so that ‘.’ is only tried
at the appropriate point.

The order of testing cdpath is modified if the option POSIX_CD is set, as described
in the documentation for the option.

If no directory is found, the option CDABLE_VARS is set, and a parameter named arg
exists whose value begins with a slash, treat its value as the directory. In that case,
the parameter is added to the named directory hash table.

The second form of cd substitutes the string new for the string old in the name of
the current directory, and tries to change to this new directory.

The third form of cd extracts an entry from the directory stack, and changes to that
directory. An argument of the form ‘+n’ identifies a stack entry by counting from
the left of the list shown by the dirs command, starting with zero. An argument of
the form ‘-n’ counts from the right. If the PUSHD_MINUS option is set, the meanings
of ‘+’ and ‘-’ in this context are swapped. If the POSIX_CD option is set, this form
of cd is not recognised and will be interpreted as the first form.

If the —q (quiet) option is specified, the hook function chpwd and the functions in
the array chpwd_functions are not called. This is useful for calls to cd that do not
change the environment seen by an interactive user.

If the -s option is specified, cd refuses to change the current directory if the given
pathname contains symlinks. If the -P option is given or the CHASE_LINKS option is
set, symbolic links are resolved to their true values. If the -L option is given symbolic
links are retained in the directory (and not resolved) regardless of the state of the
CHASE_LINKS option.

Same as cd.

See Section 22.4 [The zsh/clone Module|, page 296.

command [-pvV] simple command

The simple command argument is taken as an external command instead of a func-
tion or builtin and is executed. If the POSIX_BUILTINS option is set, builtins will
also be executed but certain special properties of them are suppressed. The -p flag
causes a default path to be searched instead of that in $path. With the -v flag,
command is similar to whence and with -V, it is equivalent to whence -v.

See also Section 6.2 [Precommand Modifiers|, page 10.

comparguments

See Section 22.8 [The zsh/computil Module], page 302.

compcall See Section 22.5 [The zsh/compctl Module], page 297.

compctl See Section 22.5 [The zsh/compctl Module], page 297.
compdescribe

See Section 22.8 [The zsh/computil Module], page 302.
compfiles

See Section 22.8 [The zsh/computil Module], page 302.

Chapter 17: Shell Builtin Commands 128

compgroups
See Section 22.8 [The zsh/computil Module], page 302.

compquote
See Section 22.8 [The zsh/computil Module], page 302.

comptags See Section 22.8 [The zsh/computil Module|, page 302.
comptry See Section 22.8 [The zsh/computil Module], page 302.

compvalues
See Section 22.8 [The zsh/computil Module], page 302.

continue | n |
Resume the next iteration of the enclosing for, while, until, select or repeat
loop. If an arithmetic expression n is specified, break out of n-1 loops and resume
at the nth enclosing loop.

declare Same as typeset.

dirs [-c | [arg ... |

dirs [-1pv |
With no arguments, print the contents of the directory stack. Directories are added
to this stack with the pushd command, and removed with the cd or popd commands.
If arguments are specified, load them onto the directory stack, replacing anything
that was there, and push the current directory onto the stack.

-c clear the directory stack.

-1 print directory names in full instead of using of using ~ expressions
(Section 14.7 [Filename Expansion], page 63).

-p print directory entries one per line.

-v number the directories in the stack when printing.

disable [~afmprs | name ...
Temporarily disable the named hash table elements or patterns. The default is to
disable builtin commands. This allows you to use an external command with the
same name as a builtin command. The -a option causes disable to act on regular
or global aliases. The -s option causes disable to act on suffix aliases. The -f
option causes disable to act on shell functions. The -r options causes disable
to act on reserved words. Without arguments all disabled hash table elements
from the corresponding hash table are printed. With the -m flag the arguments
are taken as patterns (which should be quoted to prevent them from undergoing
filename expansion), and all hash table elements from the corresponding hash table
matching these patterns are disabled. Disabled objects can be enabled with the
enable command.

With the option -p, name ... refer to elements of the shell’s pattern syntax as
described in Section 14.8 [Filename Generation|, page 65. Certain elements can be
disabled separately, as given below.

Note that patterns not allowed by the current settings for the options
EXTENDED_GLOB, KSH_GLOB and SH_GLOB are never enabled, regardless of the setting
here. For example, if EXTENDED_GLOB is not active, the pattern ~ is ineffective
even if ‘disable -p """’ has not been issued. The list below indicates any option
settings that restrict the use of the pattern. It should be noted that setting
SH_GLOB has a wider effect than merely disabling patterns as certain expressions,
in particular those involving parentheses, are parsed differently.

Chapter 17: Shell Builtin Commands 129

The following patterns may be disabled; all the strings need quoting on the command
line to prevent them from being interpreted immediately as patterns and the patterns
are shown below in single quotes as a reminder.

790 The pattern character ? wherever it occurs, including when preceding
a parenthesis with KSH_GLOB.

%7 The pattern character * wherever it occurs, including recursive globbing
and when preceding a parenthesis with KSH_GLOB.

[Character classes.

»<> (NO_SH_GLOB)
Numeric ranges.

>| > (NO_SH_GLOB)
Alternation in grouped patterns, case statements, or KSH_GLOB paren-
thesised expressions.

» (> (NO_SH_GLOB)
Grouping using single parentheses. Disabling this does not disable the
use of parentheses for KSH_GLOB where they are introduced by a special
character, nor for glob qualifiers (use ‘setopt NO_BARE_GLOB_QUAL’ to
disable glob qualifiers that use parentheses only).

r7 (EXTENDED_GLOB)
Exclusion in the form A~B.

rm (EXTENDED_GLOB)
Exclusion in the form A~B.

T# (EXTENDED_GLOB)
The pattern character # wherever it occurs, both for repetition of a
previous pattern and for indicating globbing flags.

»?(> (KSH_GLOB)
The grouping form 7(...). Note this is also disabled if >7’ is disabled.

'+ (> (KSH_GLOB)
The grouping form *(...). Note this is also disabled if ’*’ is disabled.

»+(* (KSH_GLOB)
The grouping form +(...).

»1(* (KSH_GLOB)
The grouping form ! (...).

»@(’ (KSH_GLOB)
The grouping form @(...).

disown [job ...]

job ...
job ...

&l

&!

Remove the specified jobs from the job table; the shell will no longer report their
status, and will not complain if you try to exit an interactive shell with them running
or stopped. If no job is specified, disown the current job.

If the jobs are currently stopped and the AUTO_CONTINUE option is not set, a warning
is printed containing information about how to make them running after they have
been disowned. If one of the latter two forms is used, the jobs will automatically be
made running, independent of the setting of the AUTO_CONTINUE option.

Chapter 17: Shell Builtin Commands 130

echo [-neE | [arg ...]

echotc

echoti

Write each arg on the standard output, with a space separating each one. If the -n
flag is not present, print a newline at the end. echo recognizes the following escape
sequences:

\a bell character

\b backspace

\c suppress subsequent characters and final newline
\e escape

\f form feed

\n linefeed (newline)

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\ONNN character code in octal
\xNN character code in hexadecimal

\ulNNNN unicode character code in hexadecimal

\UNNNNNNNN
unicode character code in hexadecimal

The -E flag, or the BSD_ECHO option, can be used to disable these escape sequences.
In the latter case, —e flag can be used to enable them.

Note that for standards compliance a double dash does not terminate option pro-
cessing; instead, it is printed directly. However, a single dash does terminate option
processing, so the first dash, possibly following options, is not printed, but every-
thing following it is printed as an argument. The single dash behaviour is different
from other shells. For a more portable way of printing text, see printf, and for a
more controllable way of printing text within zsh, see print.

See Section 22.29 [The zsh/termcap Module], page 330.
See Section 22.30 [The zsh/terminfo Module], page 330.

emulate [-1LR | [{zsh|shl|ksh|csh} [flags ... | |

Without any argument print current emulation mode.

With single argument set up zsh options to emulate the specified shell as much as
possible. csh will never be fully emulated. If the argument is not one of the shells
listed above, zsh will be used as a default; more precisely, the tests performed on the
argument are the same as those used to determine the emulation at startup based
on the shell name, see Section 4.2 [Compatibility], page 6, . In addition to setting
shell options, the command also restores the pristine state of pattern enables, as if
all patterns had been enabled using enable -p.

If the emulate command occurs inside a function that has been marked for execution
tracing with functions -t then the xtrace option will be turned on regardless of
emulation mode or other options. Note that code executed inside the function by
the ., source, or eval commands is not considered to be running directly from the
function, hence does not provoke this behaviour.

Chapter 17: Shell Builtin Commands 131

If the -R switch is given, all settable options are reset to their default value cor-
responding to the specified emulation mode, except for certain options describing
the interactive environment; otherwise, only those options likely to cause portability
problems in scripts and functions are altered. If the -L switch is given, the options
LOCAL_OPTIONS, LOCAL_PATTERNS and LOCAL_TRAPS will be set as well, causing the
effects of the emulate command and any setopt, disable -p or enable -p, and
trap commands to be local to the immediately surrounding shell function, if any;
normally these options are turned off in all emulation modes except ksh. The -L
switch is mutually exclusive with the use of -c in flags.

If there is a single argument and the -1 switch is given, the options that would be
set or unset (the latter indicated with the prefix ‘no’) are listed. -1 can be combined
with -L or -R and the list will be modified in the appropriate way. Note the list
does not depend on the current setting of options, i.e. it includes all options that
may in principle change, not just those that would actually change.

The flags may be any of the invocation-time flags described in Chapter 4 [Invoca-
tion], page 5, except that ‘-o EMACS’ and ‘~o VI’ may not be used. Flags such as
‘“+r’/‘+0 RESTRICTED’ may be prohibited in some circumstances.

If -c arg appears in flags, arg is evaluated while the requested emulation is tem-
porarily in effect. In this case the emulation mode and all options are restored to
their previous values before emulate returns. The -R switch may precede the name
of the shell to emulate; note this has a meaning distinct from including -R in flags.

Use of -c enables ‘sticky’ emulation mode for functions defined within the evalu-
ated expression: the emulation mode is associated thereafter with the function so
that whenever the function is executed the emulation (respecting the -R switch, if
present) and all options are set (and pattern disables cleared) before entry to the
function, and the state is restored after exit. If the function is called when the
sticky emulation is already in effect, either within an ‘emulate shell -c’ expression
or within another function with the same sticky emulation, entry and exit from the
function do not cause options to be altered (except due to standard processing such
as the LOCAL_OPTIONS option). This also applies to functions marked for autoload
within the sticky emulation; the appropriate set of options will be applied at the
point the function is loaded as well as when it is run.

For example:

emulate sh -c¢ ’fni() { setopt cshnullglob; }
fno() { fni; }°
fno

The two functions fni and fno are defined with sticky sh emulation. fno is then
executed, causing options associated with emulations to be set to their values in sh.
fno then calls fni; because fni is also marked for sticky sh emulation, no option
changes take place on entry to or exit from it. Hence the option cshnullglob,
turned off by sh emulation, will be turned on within fni and remain on return to
fno. On exit from fno, the emulation mode and all options will be restored to the
state they were in before entry to the temporary emulation.

The documentation above is typically sufficient for the intended purpose of executing
code designed for other shells in a suitable environment. More detailed rules follow.

1. The sticky emulation environment provided by ‘emulate shell -c’ is
identical to that provided by entry to a function marked for sticky emu-
lation as a consequence of being defined in such an environment. Hence,
for example, the sticky emulation is inherited by subfunctions defined
within functions with sticky emulation.

Chapter 17:

Shell Builtin Commands 132

2. No change of options takes place on entry to or exit from functions
that are not marked for sticky emulation, other than those that would
normally take place, even if those functions are called within sticky
emulation.

3. No special handling is provided for functions marked for autoload nor
for functions present in wordcode created by the zcompile command.

4. The presence or absence of the -R switch to emulate corresponds to
different sticky emulation modes, so for example ‘emulate sh -c’, ‘em—
ulate -R sh -c’ and ‘emulate csh -c’ are treated as three distinct
sticky emulations.

5. Difference in shell options supplied in addition to the basic emulation
also mean the sticky emulations are different, so for example ‘emulate
zsh -c’and ‘emulate zsh -o cbases -c’ are treated as distinct sticky
emulations.

enable [—afmprs | name ...

Enable the named hash table elements, presumably disabled earlier with disable.
The default is to enable builtin commands. The -a option causes enable to act on
regular or global aliases. The -s option causes enable to act on suffix aliases. The
-f option causes enable to act on shell functions. The -r option causes enable
to act on reserved words. Without arguments all enabled hash table elements from
the corresponding hash table are printed. With the -m flag the arguments are taken
as patterns (should be quoted) and all hash table elements from the corresponding
hash table matching these patterns are enabled. Enabled objects can be disabled
with the disable builtin command.

enable -p reenables patterns disabled with disable -p. Note that it does not
override globbing options; for example, ‘enable -p "~"’ does not cause the pattern
character ~ to be active unless the EXTENDED_GLOB option is also set. To enable all
possible patterns (so that they may be individually disabled with disable -p), use
‘setopt EXTENDED_GLOB KSH_GLOB NO_SH_GLOB’.

eval [arg ...]
Read the arguments as input to the shell and execute the resulting command(s) in
the current shell process. The return status is the same as if the commands had been
executed directly by the shell; if there are no args or they contain no commands
(i.e. are an empty string or whitespace) the return status is zero.

exec [—cl] [-a argv0 | [command | arg ... | |

Replace the current shell with command rather than forking. If command is a
shell builtin command or a shell function, the shell executes it, and exits when the
command is complete.

With -c clear the environment; with -1 prepend - to the argv[0] string of the
command executed (to simulate a login shell); with -a argv0 set the argv[0] string
of the command executed. See Section 6.2 [Precommand Modifiers], page 10.

If the option POSIX_BUILTINS is set, command is never interpreted as a shell builtin
command or shell function. This means further precommand modifiers such as
builtin and noglob are also not interpreted within the shell. Hence command is
always found by searching the command path.

If command is omitted but any redirections are specified, then the redirections will
take effect in the current shell.

Chapter 17: Shell Builtin Commands 133

exit [n] Exit the shell with the exit status specified by an arithmetic expression n; if none is
specified, use the exit status from the last command executed. An EOF condition
will also cause the shell to exit, unless the IGNORE_EQOF option is set.

See notes at the end of Chapter 10 [Jobs & Signals|, page 27, for some possibly
unexpected interactions of the exit command with jobs.

export [namel=value] ...]
The specified names are marked for automatic export to the environment of subse-
quently executed commands. Equivalent to typeset -gx. If a parameter specified
does not already exist, it is created in the global scope.

false [arg ... |
Do nothing and return an exit status of 1.

fc [-e ename | [-s | [-LI | [-m match | [old=new ... | [first [last | |
fc -1 [-LI| [-nrdfEiD | [-t timefmt | [-m match |
[old=new ... | [first | last |]
fc -p [-a] [filename [histsize | savehistsize | |]
fc -P

fc -ARWI [filename |
The fc command controls the interactive history mechanism. Note that reading and
writing of history options is only performed if the shell is interactive. Usually this
is detected automatically, but it can be forced by setting the interactive option
when starting the shell.

The first two forms of this command select a range of events from first to last from
the history list. The arguments first and last may be specified as a number or
as a string. A negative number is used as an offset to the current history event
number. A string specifies the most recent event beginning with the given string.
All substitutions old=new, if any, are then performed on the text of the events.

The range of events selected by numbers can be narrowed further by the following

flags.

-1 restricts to only internal events (not from $HISTFILE)

-L restricts to only local events (not from other shells, see SHARE_HISTORY
in Section 16.2 [Description of Options|, page 98, — note that $HISTFILE
is considered local when read at startup)

-m takes the first argument as a pattern (which should be quoted) and only

the history events matching this pattern are considered

If first is not specified, it will be set to -1 (the most recent event), or to -16 if the
-1 flag is given. If last is not specified, it will be set to first, or to -1 if the -1 flag
is given. However, if the current event has added entries to the history with ‘print
-s’ or ‘fc -R’, then the default last for -1 includes all new history entries since the
current event began.

When the -1 flag is given, the resulting events are listed on standard output. Oth-
erwise the editor program specified by —-e ename is invoked on a file containing these
history events. If —e is not given, the value of the parameter FCEDIT is used; if that
is not set the value of the parameter EDITOR is used; if that is not set a builtin
default, usually ‘vi’ is used. If ename is ‘-’, no editor is invoked. When editing is
complete, the edited command is executed.

3 ?

The flag ‘-8’ is equivalent to ‘-e -’. The flag -r reverses the order of the events
and the flag —n suppresses event numbers when listing.

Chapter 17: Shell Builtin Commands 134

Also when listing,

-d prints timestamps for each event

-f prints full time-date stamps in the US ‘MM /DD/YY hh: mm’ format

-E prints full time-date stamps in the European ‘dd.mm.yyyy hh:mm’
format

-i prints full time-date stamps in ISO8601 ‘yyyy-mm-dd hh: mm’ format

-t fmt prints time and date stamps in the given format; fmt is formatted

with the strftime function with the zsh extensions described for the
%D{string} prompt format in Chapter 13 [Prompt Expansion|, page 35.
The resulting formatted string must be no more than 256 characters or
will not be printed

-D prints elapsed times; may be combined with one of the options above

‘fc -p’ pushes the current history list onto a stack and switches to a new history
list. If the —a option is also specified, this history list will be automatically popped
when the current function scope is exited, which is a much better solution than
creating a trap function to call ‘fc -P’ manually. If no arguments are specified, the
history list is left empty, $HISTFILE is unset, and $HISTSIZE & $SAVEHIST are set
to their default values. If one argument is given, $HISTFILE is set to that filename,
$HISTSIZE & $SAVEHIST are left unchanged, and the history file is read in (if it
exists) to initialize the new list. If a second argument is specified, $HISTSIZE &
$SAVEHIST are instead set to the single specified numeric value. Finally, if a third
argument is specified, $SAVEHIST is set to a separate value from $HISTSIZE. You
are free to change these environment values for the new history list however you
desire in order to manipulate the new history list.

‘fc -P’ pops the history list back to an older list saved by ‘fc -p’. The current
list is saved to its $HISTFILE before it is destroyed (assuming that $HISTFILE and
$SAVEHIST are set appropriately, of course). The values of $HISTFILE, $HISTSIZE,
and $SAVEHIST are restored to the values they had when ‘fc -p’ was called. Note
that this restoration can conflict with making these variables "local", so your best
bet is to avoid local declarations for these variables in functions that use ‘fc -p’.
The one other guaranteed-safe combination is declaring these variables to be local at
the top of your function and using the automatic option (-a) with ‘fc -p’. Finally,
note that it is legal to manually pop a push marked for automatic popping if you
need to do so before the function exits.

‘fc -R’ reads the history from the given file, ‘fc -W’ writes the history out to the
given file, and ‘fc -A’ appends the history out to the given file. If no filename is
specified, the $HISTFILE is assumed. If the -I option is added to -R, only those
events that are not already contained within the internal history list are added.
If the -I option is added to -A or -W, only those events that are new since last
incremental append /write to the history file are appended /written. In any case, the
created file will have no more than $SAVEHIST entries.

fg [job ...]
job ... Bring each specified job in turn to the foreground. If no job is specified, resume the
current job.

float [{+|-}Hghlprtux | [{+|-}EFLRZ [n]] [name[=value] ... |
Equivalent to typeset -E, except that options irrelevant to floating point numbers
are not permitted.

Chapter 17: Shell Builtin Commands 135

functions
functions
functions
functions
functions

[{+|-}UkmtTuWz | [-x num] [name ... |

-c oldfn newfn

-M [-s] mathfn [min [max [shellfn]]]

-M [-m pattern ... |

+M [-m | mathfn ...

Equivalent to typeset -f, with the exception of the -c, -x, -M and -W options. For
functions -uand functions -U, see autoload, which provides additional options.
For functions -t and functions -T, see typeset -f.

The -x option indicates that any functions output will have each leading tab for
indentation, added by the shell to show syntactic structure, expanded to the given
number num of spaces. num can also be 0 to suppress all indentation.

The -W option turns on the option WARN_NESTED_VAR for the named function or
functions only. The option is turned off at the start of nested functions (apart from
anonoymous functions) unless the called function also has the -W attribute.

The -c option causes oldfn to be copied to newfn. The copy is efficiently handled
internally by reference counting. If oldfn was marked for autoload it is first loaded
and if this fails the copy fails. Either function may subsequently be redefined without
affecting the other. A typical idiom is that oldfn is the name of a library shell
function which is then redefined to call newfn, thereby installing a modified version
of the function.

The -M and +M flags

Use of the -M option may not be combined with any of the options handled by
typeset -f.

functions -M mathfn defines mathfn as the name of a mathematical function recog-
nised in all forms of arithmetical expressions; see Chapter 11 [Arithmetic Evalua-
tion], page 29. By default mathfn may take any number of comma-separated ar-
guments. If min is given, it must have exactly min args; if min and max are both
given, it must have at least min and at most max args. max may be -1 to indicate
that there is no upper limit.

By default the function is implemented by a shell function of the same name;
if shellfn is specified it gives the name of the corresponding shell function while
mathifn remains the name used in arithmetical expressions. The name of the func-
tion in $0 is mathfn (not shellfn as would usually be the case), provided the option
FUNCTION_ARGZERO is in effect. The positional parameters in the shell function
correspond to the arguments of the mathematical function call.

The result of the last arithmetical expression evaluated inside the shell function
gives the result of the mathematical function. This is not limited to arithmetic sub-
stitutions of the form $((...)), but also includes arithmetical expressions evaluated
in any other way, including by the let builtin, by ((...)) statements, and even by
the return builtin and by array subscripts. Therefore, care must be taken not to
use syntactical constructs that perform arithmetic evaluation after evaluating what
is to be the result of the function. For example:

WRONG
zmath_cube() {
(C $1 * $1 * $1))
return O
}
functions -M cube 1 1 zmath_cube
print $((cube(3)))

Chapter 17: Shell Builtin Commands 136

getcap

This will print ‘0’ because of the return.

Commenting the return out would lead to a different problem: the ((...)) statement
would become the last statement in the function, so the return status ($7) of the
function would be non-zero (indicating failure) whenever the arithmetic result of
the function would happen to be zero (numerically):

WRONG
zmath_cube() {
(C$1 x $1 * $1))
}
functions -M cube 1 1 zmath_cube
print $((cube(0)))

Instead, the true builtin can be used:

RIGHT
zmath_cube() {
(C $1 % $1 * $1))
true
}
functions -M cube 1 1 zmath_cube
print $((cube(3)))

If the additional option -s is given to functions -M, the argument to the function
is a single string: anything between the opening and matching closing parenthesis
is passed to the function as a single argument, even if it includes commas or white
space. The minimum and maximum argument specifiers must therefore be 1 if given.
An empty argument list is passed as a zero-length string. Thus, the following string
function takes a single argument, including the commas, and prints 11:

stringfn() { (($#1)); true }
functions -Ms stringfn
print $((stringfn(foo,bar,rod)))

functions -M with no arguments lists all such user-defined functions in the same
form as a definition. With the additional option -m and a list of arguments, all
functions whose mathfn matches one of the pattern arguments are listed.
function +M removes the list of mathematical functions; with the additional option
-m the arguments are treated as patterns and all functions whose mathfn matches
the pattern are removed. Note that the shell function implementing the behaviour
is not removed (regardless of whether its name coincides with mathfn).

See Section 22.3 [The zsh/cap Module], page 296.

getln [-AclneE | name ...

Read the top value from the buffer stack and put it in the shell parameter name.
Equivalent to read -zr.

getopts optstring name | arg ... |

Checks the args for legal options. If the args are omitted, use the positional pa-
rameters. A valid option argument begins with a ‘4’ or a ‘-’. An argument not
beginning with a ‘+’ or a ‘~’, or the argument ‘--’; ends the options. Note that a
single ‘-’ is not considered a valid option argument. optstring contains the letters

that getopts recognizes. If a letter is followed by a ‘:’

o

:’, that option requires an
argument. The options can be separated from the argument by blanks.

Each time it is invoked, getopts places the option letter it finds in the shell param-
eter name, prepended with a ‘+’ when arg begins with a ‘+’. The index of the next
arg is stored in OPTIND. The option argument, if any, is stored in OPTARG.

Chapter 17: Shell Builtin Commands 137

The first option to be examined may be changed by explicitly assigning to OPTIND.
OPTIND has an initial value of 1, and is normally set to 1 upon entry to a shell
function and restored upon exit. (The POSIX_BUILTINS option disables this, and
also changes the way the value is calculated to match other shells.) OPTARG is not
reset and retains its value from the most recent call to getopts. If either of OPTIND
or OPTARG is explicitly unset, it remains unset, and the index or option argument is
not stored. The option itself is still stored in name in this case.

A leading ‘:’ in optstring causes getopts to store the letter of any invalid option in
OPTARG, and to set name to ‘?’ for an unknown option and to ‘:” when a required
argument is missing. Otherwise, getopts sets name to ‘?’ and prints an error
message when an option is invalid. The exit status is nonzero when there are no
more options.

hash [-Ldfmrv | [name[=value] | ...

history

hash can be used to directly modify the contents of the command hash table, and
the named directory hash table. Normally one would modify these tables by mod-
ifying one’s PATH (for the command hash table) or by creating appropriate shell
parameters (for the named directory hash table). The choice of hash table to work
on is determined by the -d option; without the option the command hash table is
used, and with the option the named directory hash table is used.

A command name starting with a / is never hashed, whether by explicit use of the
hash command or otherwise. Such a command is always found by direct look up in
the file system.

Given no arguments, and neither the -r or -f options, the selected hash table will
be listed in full.

The -r option causes the selected hash table to be emptied. It will be subsequently
rebuilt in the normal fashion. The -f option causes the selected hash table to be
fully rebuilt immediately. For the command hash table this hashes all the absolute
directories in the PATH, and for the named directory hash table this adds all users’
home directories. These two options cannot be used with any arguments.

The -m option causes the arguments to be taken as patterns (which should be quoted)
and the elements of the hash table matching those patterns are printed. This is the
only way to display a limited selection of hash table elements.

For each name with a corresponding value, put ‘name’ in the selected hash table,
associating it with the pathname ‘value’. In the command hash table, this means
that whenever ‘name’ is used as a command argument, the shell will try to execute
the file given by ‘value’. In the named directory hash table, this means that ‘value’
may be referred to as ‘“name’.

For each name with no corresponding value, attempt to add name to the hash table,
checking what the appropriate value is in the normal manner for that hash table.
If an appropriate value can’t be found, then the hash table will be unchanged.

The -v option causes hash table entries to be listed as they are added by explicit
specification. If has no effect if used with -f.

If the -L flag is present, then each hash table entry is printed in the form of a call
to hash.

Same as fc -1.

integer [{+|-}Hghlprtux | [{+|-}LRZi [n]| [name[=value] ...]

Equivalent to typeset -i, except that options irrelevant to integers are not per-
mitted.

Chapter 17: Shell Builtin Commands 138

jobs [-dlprs | [job ...]
jobs -Z string

Lists information about each given job, or all jobs if job is omitted. The -1 flag
lists process IDs, and the -p flag lists process groups. If the -r flag is specified only
running jobs will be listed and if the -s flag is given only stopped jobs are shown.
If the -d flag is given, the directory from which the job was started (which may not
be the current directory of the job) will also be shown.

The -Z option replaces the shell’s argument and environment space with the given
string, truncated if necessary to fit. This will normally be visible in ps (ps(1))
listings. This feature is typically used by daemons, to indicate their state.

Full job control is only available in the top-level interactive shell, not in commands
run in the left hand side of pipelines or within the (...) construct. However, a
snapshot of the job state at that point is taken, so it is still possible to use the jobs
builtin, or any parameter providing job information. This gives information about
the state of jobs at the point the subshell was created. If background processes
are created within the subshell, then instead information about those processes is
provided.

For example,

sleep 10 & # Job in background

(# Shell forks

jobs # Shows information about "sleep 10 &"
sleep 5 & # Process in background (no job control)
jobs # Shows information about "sleep 5 &"

)

kill [-s signal_name | -n signal_number | -sig | job ...
kill -1 | sig ... |

let arg ...

Sends either SIGTERM or the specified signal to the given jobs or processes. Signals
are given by number or by names, with or without the ‘SIG’ prefix. If the signal
being sent is not ‘KILL’ or ‘CONT’, then the job will be sent a ‘CONT’ signal if it is
stopped. The argument job can be the process ID of a job not in the job list. In the
second form, kill -1, if sig is not specified the signal names are listed. Otherwise,
for each sig that is a name, the corresponding signal number is listed. For each sig
that is a signal number or a number representing the exit status of a process which
was terminated or stopped by a signal the name of the signal is printed.

On some systems, alternative signal names are allowed for a few signals. Typical
examples are SIGCHLD and SIGCLD or SIGPOLL and SIGIO, assuming they correspond
to the same signal number. kill -1 will only list the preferred form, however kill
-1 alt will show if the alternative form corresponds to a signal number. For example,
under Linux kill -1 IO and kill -1 POLL both output 29, hence kill -I0 and
kill -POLL have the same effect.

Many systems will allow process IDs to be negative to kill a process group or zero
to kill the current process group.

Evaluate each arg as an arithmetic expression. See Chapter 11 [Arithmetic Evalu-
ation], page 29, for a description of arithmetic expressions. The exit status is 0 if
the value of the last expression is nonzero, 1 if it is zero, and 2 if an error occurred.

limit [-hs | [resource | limit | | ...

Set or display resource limits. Unless the -s flag is given, the limit applies only the
children of the shell. If -s is given without other arguments, the resource limits of
the current shell is set to the previously set resource limits of the children.

Chapter 17: Shell Builtin Commands 139

If limit is not specified, print the current limit placed on resource, otherwise set the
limit to the specified value. If the -h flag is given, use hard limits instead of soft
limits. If no resource is given, print all limits.

When looping over multiple resources, the shell will abort immediately if it detects
a badly formed argument. However, if it fails to set a limit for some other reason it
will continue trying to set the remaining limits.

resource can be one of:

addressspace
Maximum amount of address space used.

aiomemorylocked
Maximum amount of memory locked in RAM for AIO operations.

aiooperations
Maximum number of AIO operations.

cachedthreads
Maximum number of cached threads.

coredumpsize
Maximum size of a core dump.

cputime Maximum CPU seconds per process.
datasize Maximum data size (including stack) for each process.

descriptors
Maximum value for a file descriptor.

filesize Largest single file allowed.
kqueues Maximum number of kqueues allocated.
maxproc Maximum number of processes.

maxpthreads
Maximum number of threads per process.

memorylocked
Maximum amount of memory locked in RAM.

memoryuse
Maximum resident set size.

msgqueue Maximum number of bytes in POSIX message queues.

posixlocks
Maximum number of POSIX locks per user.

pseudoterminals
Maximum number of pseudo-terminals.

resident Maximum resident set size.
sigpending
Maximum number of pending signals.

sockbufsize
Maximum size of all socket buffers.

stacksize
Maximum stack size for each process.

Chapter 17: Shell Builtin Commands 140

swapsize Maximum amount of swap used.

vmemorysize
Maximum amount of virtual memory.

Which of these resource limits are available depends on the system. resource can be
abbreviated to any unambiguous prefix. It can also be an integer, which corresponds
to the integer defined for the resource by the operating system.

If argument corresponds to a number which is out of the range of the resources
configured into the shell, the shell will try to read or write the limit anyway, and
will report an error if this fails. As the shell does not store such resources internally,
an attempt to set the limit will fail unless the -s option is present.

limit is a number, with an optional scaling factor, as follows:

nh hours

nk kilobytes (default)

nm megabytes or minutes
ng gigabytes

[mm:]ss minutes and seconds

The 1imit command is not made available by default when the shell starts in a mode
emulating another shell. It can be made available with the command ‘zmodload -F
zsh/rlimits b:limit’.

local [{+|-}AHUahlprtux | [{+|-}EFLRZi [n || [name[=value] ...]
Same as typeset, except that the options -g, and -f are not permitted. In this
case the -x option does not force the use of -g, i.e. exported variables will be local
to functions.

logout [n]
Same as exit, except that it only works in a login shell.

noglob simple command
See Section 6.2 [Precommand Modifiers], page 10.

popd [-q | [{+I-}n]
Remove an entry from the directory stack, and perform a cd to the new top directory.
With no argument, the current top entry is removed. An argument of the form ‘+n’
identifies a stack entry by counting from the left of the list shown by the dirs
command, starting with zero. An argument of the form -n counts from the right.
If the PUSHD_MINUS option is set, the meanings of ‘+’ and ‘-’ in this context are
swapped.

If the -q (quiet) option is specified, the hook function chpwd and the functions
in the array $chpwd_functions are not called, and the new directory stack is not
printed. This is useful for calls to popd that do not change the environment seen by
an interactive user.

print [-abcDilmnNoOpPrsSz | [-un| [-f format | [-C cols]
[-v name | [-xX tabstop | [-R [-en]] [arg ... |
With the ‘-f’ option the arguments are printed as described by printf. With no
flags or with the flag ‘-’, the arguments are printed on the standard output as

described by echo, with the following differences: the escape sequence ‘\M-x’ (or
‘\Mx’) metafies the character x (sets the highest bit), ‘\C-x’ (or ‘\Cx’) produces
a control character (‘\C-@ and ‘\C-?’ give the characters NULL and delete), a

Chapter 17: Shell Builtin Commands 141

character code in octal is represented by ‘\NNN’ (instead of ‘\ONNN’), and ‘\E’ is
a synonym for ‘\e’. Finally, if not in an escape sequence, ‘\’ escapes the following
character and is not printed.

—-a

-b

—-m

-n

cols

Print arguments with the column incrementing first. Only useful with
the -c and -C options.

Recognize all the escape sequences defined for the bindkey command,
see Section 18.3 [Zle Builtins|, page 165.

Print the arguments in columns. Unless -a is also given, arguments are
printed with the row incrementing first.

Print the arguments in cols columns. Unless -a is also given, arguments
are printed with the row incrementing first.

Treat the arguments as paths, replacing directory prefixes with ~ ex-
pressions corresponding to directory names, as appropriate.

If given together with —o or -0, sorting is performed case-independently.

Print the arguments separated by newlines instead of spaces. Note: if
the list of arguments is empty, print -1 will still output one empty line.
To print a possibly-empty list of arguments one per line, use print -C1,
as in ‘print -rC1 -- "$list[@]"’.

Take the first argument as a pattern (should be quoted), and remove it
from the argument list together with subsequent arguments that do not
match this pattern.

Do not add a newline to the output.

Print the arguments separated and terminated by nulls. Again, print
-rNC1 -- "$1list[@]" is a canonical way to print an arbitrary list as
null-delimited records.

Print the arguments sorted in ascending order.
Print the arguments sorted in descending order.
Print the arguments to the input of the coprocess.

Perform prompt expansion (see Chapter 13 [Prompt Expansion],
page 35). In combination with ‘-f’, prompt escape sequences are
parsed only within interpolated arguments, not within the format
string.

Ignore the escape conventions of echo.

Emulate the BSD echo command, which does not process escape se-
quences unless the -e flag is given. The -n flag suppresses the trailing
newline. Only the -e and -n flags are recognized after -R; all other
arguments and options are printed.

Place the results in the history list instead of on the standard output.
Each argument to the print command is treated as a single word in
the history, regardless of its content.

Place the results in the history list instead of on the standard output.
In this case only a single argument is allowed; it will be split into words
as if it were a full shell command line. The effect is similar to reading
the line from a history file with the HIST_LEX_WORDS option active.

Chapter 17: Shell Builtin Commands 142

-un Print the arguments to file descriptor n.
-v name Store the printed arguments as the value of the parameter name.

-x tab-stop

FExpand leading tabs on each line of output in the printed string as-
suming a tab stop every tab-stop characters. This is appropriate for
formatting code that may be indented with tabs. Note that leading
tabs of any argument to print, not just the first, are expanded, even
if print is using spaces to separate arguments (the column count is
maintained across arguments but may be incorrect on output owing to
previous unexpanded tabs).

The start of the output of each print command is assumed to be aligned
with a tab stop. Widths of multibyte characters are handled if the
option MULTIBYTE is in effect. This option is ignored if other formatting
options are in effect, namely column alignment or printf style, or if
output is to a special location such as shell history or the command line
editor.

-X tab-stop
This is similar to -x, except that all tabs in the printed string are
expanded. This is appropriate if tabs in the arguments are being used
to produce a table format.

-z Push the arguments onto the editing buffer stack, separated by spaces.

)

If any of ‘-m’, ‘-0’ or ‘-0’ are used in combination with ‘-f’ and there are no
arguments (after the removal process in the case of ‘-m’) then nothing is printed.

printf [-v name | format [arg ...]

Print the arguments according to the format specification. Formatting rules are the
same as used in C. The same escape sequences as for echo are recognised in the for-
mat. All C conversion specifications ending in one of csdiouxXeEfgGn are handled.
In addition to this, ‘%b’ can be used instead of ‘%s’ to cause escape sequences in the
argument to be recognised and ‘/%q’ can be used to quote the argument in such a
way that allows it to be reused as shell input. With the numeric format specifiers, if
the corresponding argument starts with a quote character, the numeric value of the
following character is used as the number to print; otherwise the argument is evalu-
ated as an arithmetic expression. See Chapter 11 [Arithmetic Evaluation], page 29,
for a description of arithmetic expressions. With ‘%n’; the corresponding argument
is taken as an identifier which is created as an integer parameter.

Normally, conversion specifications are applied to each argument in order but they
can explicitly specify the nth argument is to be used by replacing ‘%’ by ‘%n$’ and
‘*” by ‘*n$’. It is recommended that you do not mix references of this explicit style
with the normal style and the handling of such mixed styles may be subject to future
change.

If arguments remain unused after formatting, the format string is reused until all
arguments have been consumed. With the print builtin, this can be suppressed by
using the -r option. If more arguments are required by the format than have been
specified, the behaviour is as if zero or an empty string had been specified as the
argument.

The -v option causes the output to be stored as the value of the parameter name,
instead of printed. If name is an array and the format string is reused when con-
suming arguments then one array element will be used for each use of the format
string.

Chapter 17: Shell Builtin Commands 143

pushd [-gsLP | [arg |

pushd [-gsLP | old new

pushd [-gsLP | {+|-}n
Change the current directory, and push the old current directory onto the directory
stack. In the first form, change the current directory to arg. If arg is not specified,
change to the second directory on the stack (that is, exchange the top two entries),
or change to $HOME if the PUSHD_TO_HOME option is set or if there is only one entry
on the stack. Otherwise, arg is interpreted as it would be by cd. The meaning of
old and new in the second form is also the same as for cd.

The third form of pushd changes directory by rotating the directory list. An argu-
ment of the form ‘+n’ identifies a stack entry by counting from the left of the list
shown by the dirs command, starting with zero. An argument of the form ‘-n’
counts from the right. If the PUSHD_MINUS option is set, the meanings of ‘+’ and ‘-’
in this context are swapped.

If the -q (quiet) option is specified, the hook function chpwd and the functions in the
array $chpwd_functions are not called, and the new directory stack is not printed.
This is useful for calls to pushd that do not change the environment seen by an
interactive user.

If the option -q is not specified and the shell option PUSHD_SILENT is not set, the
directory stack will be printed after a pushd is performed.

The options -s, -L and -P have the same meanings as for the cd builtin.

pushln [arg ... |
Equivalent to print -nz.
pwd [-rLP]
Print the absolute pathname of the current working directory. If the -r or the -P
flag is specified, or the CHASE_LINKS option is set and the -L flag is not given, the
printed path will not contain symbolic links.
r Same as fc -e -.
read [-rszpqAclneE | [-t [num || [-k [num]|]| [-d delim |
[-u n | [[name]|[?prompt| | [name ...]

Read one line and break it into fields using the characters in $IFS as separators,
except as noted below. The first field is assigned to the first name, the second field
to the second name, etc., with leftover fields assigned to the last name. If name is
omitted then REPLY is used for scalars and reply for arrays.

-r Raw mode: a ‘\’ at the end of a line does not signify line continuation
and backslashes in the line don’t quote the following character and are
not removed.

-s Don’t echo back characters if reading from the terminal.

-q Read only one character from the terminal and set name to ‘y’ if this
character was ‘y’ or ‘Y’ and to ‘n’ otherwise. With this flag set the return
status is zero only if the character was ‘y’ or ‘Y’. This option may be
used with a timeout (see -t); if the read times out, or encounters end
of file, status 2 is returned. Input is read from the terminal unless one
of —u or -p is present. This option may also be used within zle widgets.

-k [num | Read only one (or num) characters. All are assigned to the first name,
without word splitting. This flag is ignored when -q is present. Input
is read from the terminal unless one of —u or -p is present. This option
may also be used within zle widgets.

Chapter 17: Shell Builtin Commands 144

-z

-n

-un
P
-d delim

-t [num |

Note that despite the mnemonic ‘key’ this option does read full char-
acters, which may consist of multiple bytes if the option MULTIBYTE is
set.

Read one entry from the editor buffer stack and assign it to the first
name, without word splitting. Text is pushed onto the stack with ‘print
-z’ or with push-line from the line editor (see Chapter 18 [Zsh Line
Editor]|, page 163). This flag is ignored when the -k or -q flags are
present.

The input read is printed (echoed) to the standard output. If the -e
flag is used, no input is assigned to the parameters.

The first name is taken as the name of an array and all words are
assigned to it.

These flags are allowed only if called inside a function used for com-
pletion (specified with the -K flag to compctl). If the -c flag is given,
the words of the current command are read. If the -1 flag is given, the
whole line is assigned as a scalar. If both flags are present, -1 is used
and -c is ignored.

Together with —c, the number of the word the cursor is on is read. With
-1, the index of the character the cursor is on is read. Note that the
command name is word number 1, not word 0, and that when the cursor
is at the end of the line, its character index is the length of the line plus
one.

Input is read from file descriptor n.
Input is read from the coprocess.
Input is terminated by the first character of delim instead of by newline.

Test if input is available before attempting to read. If num is present,
it must begin with a digit and will be evaluated to give a number of
seconds, which may be a floating point number; in this case the read
times out if input is not available within this time. If num is not present,
it is taken to be zero, so that read returns immediately if no input is
available. If no input is available, return status 1 and do not set any
variables.

This option is not available when reading from the editor buffer with -z,
when called from within completion with -c or -1, with —q which clears
the input queue before reading, or within zle where other mechanisms
should be used to test for input.

Note that read does not attempt to alter the input processing mode.
The default mode is canonical input, in which an entire line is read at a
time, so usually ‘read -t’ will not read anything until an entire line has
been typed. However, when reading from the terminal with -k input is
processed one key at a time; in this case, only availability of the first
character is tested, so that e.g. ‘read -t -k 2’ can still block on the
second character. Use two instances of ‘read -t -k’ if this is not what
is wanted.

If the first argument contains a ‘?’, the remainder of this word is used as a prompt
on standard error when the shell is interactive.

Chapter 17: Shell Builtin Commands 145

readonly

rehash

return [n |

sched

The value (exit status) of read is 1 when an end-of-file is encountered, or when
-c or -1 is present and the command is not called from a compctl function, or as
described for —-q. Otherwise the value is 0.

The behavior of some combinations of the -k, -p, —-q, —u and -z flags is undefined.
Presently -q cancels all the others, -p cancels —u, -k cancels -z, and otherwise -z
cancels both -p and -u.

The -c or -1 flags cancel any and all of ~kpquz.
Same as typeset -r. With the POSIX_BUILTINS option set, same as typeset -gr.

Same as hash -r.

Causes a shell function or ‘.’ script to return to the invoking script with the return
status specified by an arithmetic expression n. For example, the following prints
‘42’

() { integer foo=40; return "foo + 2" }

echo $7

If n is omitted, the return status is that of the last command executed.

If return was executed from a trap in a TRAPNAL function, the effect is different for
zero and non-zero return status. With zero status (or after an implicit return at the
end of the trap), the shell will return to whatever it was previously processing; with
a non-zero status, the shell will behave as interrupted except that the return status
of the trap is retained. Note that the numeric value of the signal which caused the
trap is passed as the first argument, so the statement ‘return "128+$1"’ will return
the same status as if the signal had not been trapped.

See Section 22.24 [The zsh/sched Module], page 321.

set [{+|-}options | {+|-}o [option_name | | ... [{+|-}A [name | |

[arg .

]

Set the options for the shell and/or set the positional parameters, or declare and set
an array. If the —-s option is given, it causes the specified arguments to be sorted
before assigning them to the positional parameters (or to the array name if -A is
used). With +s sort arguments in descending order. For the meaning of the other
flags, see Chapter 16 [Options|, page 97. Flags may be specified by name using
the —o option. If no option name is supplied with -o, the current option states are
printed: see the description of setopt below for more information on the format.
With +o they are printed in a form that can be used as input to the shell.

If the -A flag is specified, name is set to an array containing the given args; if no
name is specified, all arrays are printed together with their values.

If +A is used and name is an array, the given arguments will replace the initial
elements of that array; if no name is specified, all arrays are printed without their
values.

The behaviour of arguments after —A name or +A name depends on whether the
option KSH_ARRAYS is set. If it is not set, all arguments following name are treated
as values for the array, regardless of their form. If the option is set, normal option
processing continues at that point; only regular arguments are treated as values for
the array. This means that

set -A array -x —- foo

sets array to ‘-x -— foo’ if KSH_ARRAYS is not set, but sets the array to foo and
turns on the option ‘-x’ if it is set.

Chapter 17: Shell Builtin Commands 146

setcap

If the -A flag is not present, but there are arguments beyond the options, the posi-
tional parameters are set. If the option list (if any) is terminated by ‘-=’, and there
are no further arguments, the positional parameters will be unset.

If no arguments and no ‘--’ are given, then the names and values of all parameters
are printed on the standard output. If the only argument is ‘+’, the names of all
parameters are printed.

For historical reasons, ‘set -’ is treated as ‘set +xv’ and ‘set - args’ as ‘set +xv
-— args’ when in any other emulation mode than zsh’s native mode.

See Section 22.3 [The zsh/cap Module], page 296.

setopt [{+|-}options | {+|-}o option_name | [-m | [name ... |

Set the options for the shell. All options specified either with flags or by name are
set.

If no arguments are supplied, the names of all options currently set are printed.
The form is chosen so as to minimize the differences from the default options for
the current emulation (the default emulation being native zsh, shown as <Z> in
Section 16.2 [Description of Options|, page 98). Options that are on by default for
the emulation are shown with the prefix no only if they are off, while other options
are shown without the prefix no and only if they are on. In addition to options
changed from the default state by the user, any options activated automatically by
the shell (for example, SHIN_STDIN or INTERACTIVE) will be shown in the list. The
format is further modified by the option KSH_OPTION_PRINT, however the rationale
for choosing options with or without the no prefix remains the same in this case.

If the -m flag is given the arguments are taken as patterns (which should be quoted
to protect them from filename expansion), and all options with names matching
these patterns are set.

Note that a bad option name does not cause execution of subsequent shell code to
be aborted; this is behaviour is different from that of ‘set -o’. This is because set
is regarded as a special builtin by the POSIX standard, but setopt is not.

shift [-p | [n] [name ...]

The positional parameters ${n+1} ... are renamed to $1 ..., where n is an arithmetic
expression that defaults to 1. If any names are given then the arrays with these
names are shifted instead of the positional parameters.

If the option -p is given arguments are instead removed (popped) from the end
rather than the start of the array.

source file [arg ...]

stat

[

Same as ‘.’ except that the current directory is always searched and is always
searched first, before directories in $path.

See Section 22.26 [The zsh/stat Module], page 323.

suspend [-f |

Suspend the execution of the shell (send it a SIGTSTP) until it receives a SIGCONT.
Unless the —-f option is given, this will refuse to suspend a login shell.

test [arg ...]
[[arg ...]]

Like the system version of test. Added for compatibility; use conditional expres-
sions instead (see Chapter 12 [Conditional Expressions], page 32). The main differ-
ences between the conditional expression syntax and the test and [builtins are:
these commands are not handled syntactically, so for example an empty variable

Chapter 17: Shell Builtin Commands 147

times

expansion may cause an argument to be omitted; syntax errors cause status 2 to be
returned instead of a shell error; and arithmetic operators expect integer arguments
rather than arithmetic expressions.

The command attempts to implement POSIX and its extensions where these are
specified. Unfortunately there are intrinsic ambiguities in the syntax; in particular
there is no distinction between test operators and strings that resemble them. The
standard attempts to resolve these for small numbers of arguments (up to four); for
five or more arguments compatibility cannot be relied on. Users are urged wherever
possible to use the ‘[[’ test syntax which does not have these ambiguities.

Print the accumulated user and system times for the shell and for processes run
from the shell.

trap [arg | [sig ...]

arg is a series of commands (usually quoted to protect it from immediate evaluation
by the shell) to be read and executed when the shell receives any of the signals
specified by one or more sig args. Each sig can be given as a number, or as the
name of a signal either with or without the string SIG in front (e.g. 1, HUP, and
SIGHUP are all the same signal).

If arg is ‘-’, then the specified signals are reset to their defaults, or, if no sig args
are present, all traps are reset.

If arg is an empty string, then the specified signals are ignored by the shell (and by
the commands it invokes).

If arg is omitted but one or more sig args are provided (i.e. the first argument is a
valid signal number or name), the effect is the same as if arg had been specified as
(o

The trap command with no arguments prints a list of commands associated with
each signal.

If sig is ZERR then arg will be executed after each command with a nonzero exit
status. ERR is an alias for ZERR on systems that have no SIGERR signal (this is the
usual case).

If sig is DEBUG then arg will be executed before each command if the option
DEBUG_BEFORE_CMD is set (as it is by default), else after each command. Here, a
‘command’ is what is described as a ‘sublist’ in the shell grammar, see Section 6.1
[Simple Commands & Pipelines|, page 9. If DEBUG_BEFORE_CMD is set various addi-
tional features are available. First, it is possible to skip the next command by setting
the option ERR_EXIT; see the description of the ERR_EXIT option in Section 16.2 [De-
scription of Options|, page 98. Also, the shell parameter ZSH_DEBUG_CMD is set to
the string corresponding to the command to be executed following the trap. Note
that this string is reconstructed from the internal format and may not be formatted
the same way as the original text. The parameter is unset after the trap is executed.

If sig is 0 or EXIT and the trap statement is executed inside the body of a function,
then the command arg is executed after the function completes. The value of $?
at the start of execution is the exit status of the shell or the return status of the
function exiting. If sig is 0 or EXIT and the trap statement is not executed inside
the body of a function, then the command arg is executed when the shell terminates;
the trap runs before any zshexit hook functions.

ZERR, DEBUG, and EXIT traps are not executed inside other traps. ZERR and DEBUG
traps are kept within subshells, while other traps are reset.

Note that traps defined with the trap builtin are slightly different from those defined
as ‘TRAPNAL () { ... }’, as the latter have their own function environment (line

Chapter 17:

true [arg ...

Shell Builtin Commands 148

numbers, local variables, etc.) while the former use the environment of the command
in which they were called. For example,

trap ’print $LINENO’ DEBUG

will print the line number of a command executed after it has run, while
TRAPDEBUG() { print $LINENO; }

will always print the number zero.

Alternative signal names are allowed as described under kill above. Defining a
trap under either name causes any trap under an alternative name to be removed.
However, it is recommended that for consistency users stick exclusively to one name
or another.

]

Do nothing and return an exit status of 0.

ttyctl [-fu]

The -f option freezes the tty (i.e. terminal or terminal emulator), and -u unfreezes
it. When the tty is frozen, no changes made to the tty settings by external programs
will be honored by the shell, except for changes in the size of the screen; the shell
will simply reset the settings to their previous values as soon as each command exits
or is suspended. Thus, stty and similar programs have no effect when the tty is
frozen. Freezing the tty does not cause the current state to be remembered: instead,
it causes future changes to the state to be blocked.

Without options it reports whether the terminal is frozen or not.

Note that, regardless of whether the tty is frozen or not, the shell needs to change
the settings when the line editor starts, so unfreezing the tty does not guarantee
settings made on the command line are preserved. Strings of commands run between
editing the command line will see a consistent tty state. See also the shell variable
STTY for a means of initialising the tty before running external commands and/or
freezing the tty around a single command.

type [-wfpamsS | name ...

Equivalent to whence -v.

typeset [{+|-}AHUaghlmrtux | [{+|-}EFLRZip [n] |
[+] [name[=value] ...]
typeset -T [{+|-}Uglrux | [{+|-}LRZp [n]]
[+ | SCALAR[=value| array[=(value ...)] [sep]]

typeset -f

[{+|-}TUkmtuz | [+] [name ... |
Set or display attributes and values for shell parameters.

Except as noted below for control flags that change the behavior, a parameter is
created for each name that does not already refer to one. When inside a function,
a new parameter is created for every name (even those that already exist), and
is unset again when the function completes. See Section 15.4 [Local Parameters],
page 84. The same rules apply to special shell parameters, which retain their special
attributes when made local.

For each name=value assignment, the parameter name is set to value. If the assign-
ment is omitted and name does not refer to an existing parameter, a new parameter
is initialized to empty string, zero, or empty array (as appropriate), unless the shell
option TYPESET_TO_UNSET is set. When that option is set, the parameter attributes
are recorded but the parameter remains unset.

If the shell option TYPESET_SILENT is not set, for each remaining name that refers
to a parameter that is already set, the name and value of the parameter are printed

Chapter 17: Shell Builtin Commands 149

in the form of an assignment. Nothing is printed for newly-created parameters,
or when any attribute flags listed below are given along with the name. Using ‘+’
instead of minus to introduce an attribute turns it off.

If no name is present, the names and values of all parameters are printed. In this
case the attribute flags restrict the display to only those parameters that have the
specified attributes, and using ‘+’ rather than ‘=’ to introduce the flag suppresses
printing of the values of parameters when there is no parameter name.

All forms of the command handle scalar assignment. Array assignment is possible
if any of the reserved words declare, export, float, integer, local, readonly
or typeset is matched when the line is parsed (N.B. not when it is executed). In
this case the arguments are parsed as assignments, except that the ‘+=’ syntax and
the GLOB_ASSIGN option are not supported, and scalar values after = are not split
further into words, even if expanded (regardless of the setting of the KSH_TYPESET
option; this option is obsolete).

Examples of the differences between command and reserved word parsing:

Reserved word parsing
typeset svar=$(echo one word) avar=(several words)

The above creates a scalar parameter svar and an array parameter avar as if the
assignments had been

svar="one word"
avar=(several words)

On the other hand:

Normal builtin interface
builtin typeset svar=$(echo two words)

The builtin keyword causes the above to use the standard builtin interface to
typeset in which argument parsing is performed in the same way as for other
commands. This example creates a scalar svar containing the value two and another
scalar parameter words with no value. An array value in this case would either cause
an error or be treated as an obscure set of glob qualifiers.

Arbitrary arguments are allowed if they take the form of assignments after command
line expansion; however, these only perform scalar assignment:

var=’svar=val’
typeset $var

The above sets the scalar parameter svar to the value val. Parentheses around
the value within var would not cause array assignment as they will be treated as
ordinary characters when $var is substituted. Any non-trivial expansion in the
name part of the assignment causes the argument to be treated in this fashion:

typeset {varl,var2,var3}=name

The above syntax is valid, and has the expected effect of setting the three parameters
to the same value, but the command line is parsed as a set of three normal command
line arguments to typeset after expansion. Hence it is not possible to assign to
multiple arrays by this means.

Note that each interface to any of the commands may be disabled separately. For
example, ‘disable -r typeset’ disables the reserved word interface to typeset,
exposing the builtin interface, while ‘disable typeset’ disables the builtin. Note
that disabling the reserved word interface for typeset may cause problems with the
output of ‘typeset -p’, which assumes the reserved word interface is available in
order to restore array and associative array values.

Chapter 17: Shell Builtin Commands 150

Unlike parameter assignment statements, typeset’s exit status on an assignment
that involves a command substitution does not reflect the exit status of the command
substitution. Therefore, to test for an error in a command substitution, separate
the declaration of the parameter from its initialization:

WRONG

typeset vari=$(exit 1) || echo "Trouble with vari"

RIGHT

typeset varl && varl=$(exit 1) || echo "Trouble with varl"

To initialize a parameter param to a command output and mark it readonly, use
typeset -r param or readonly param after the parameter assignment statement.

If no attribute flags are given, and either no name arguments are present or the flag
+m is used, then each parameter name printed is preceded by a list of the attributes
of that parameter (array, association, exported, float, integer, readonly, or
undefined for autoloaded parameters not yet loaded). If +m is used with attribute
flags, and all those flags are introduced with +, the matching parameter names are
printed but their values are not.

The following control flags change the behavior of typeset:

+ If ‘+’ appears by itself in a separate word as the last option, then the
names of all parameters (functions with -f) are printed, but the values
(function bodies) are not. No name arguments may appear, and it
is an error for any other options to follow ‘+’. The effect of ‘+’ is as
if all attribute flags which precede it were given with a ‘+’ prefix. For
example, ‘typeset -U +is equivalent to ‘typeset +U’ and displays the
names of all arrays having the uniqueness attribute, whereas ‘typeset
-f -U + displays the names of all autoloadable functions. If + is the
only option, then type information (array, readonly, etc.) is also printed
for each parameter, in the same manner as ‘typeset +m "x"’.

-g The -g (global) means that any resulting parameter will not be re-
stricted to local scope. Note that this does not necessarily mean that
the parameter will be global, as the flag will apply to any existing pa-
rameter (even if unset) from an enclosing function. This flag does not
affect the parameter after creation, hence it has no effect when list-
ing existing parameters, nor does the flag +g have any effect except in
combination with -m (see below).

-m If the -m flag is given the name arguments are taken as patterns (use
quoting to prevent these from being interpreted as file patterns). With
no attribute flags, all parameters (or functions with the -f flag) with
matching names are printed (the shell option TYPESET_SILENT is not
used in this case).

If the +g flag is combined with -m, a new local parameter is created
for every matching parameter that is not already local. Otherwise -m
applies all other flags or assignments to the existing parameters.

Except when assignments are made with name=value, using +m forces
the matching parameters and their attributes to be printed, even inside
a function. Note that -m is ignored if no patterns are given, so ‘typeset
-m’ displays attributes but ‘typeset -a +m’ does not.

Chapter 17: Shell Builtin Commands 151

-p[n]

If the -p option is given, parameters and values are printed in the form
of a typeset command with an assignment, regardless of other flags and
options. Note that the -H flag on parameters is respected; no value will
be shown for these parameters.

-p may be followed by an optional integer argument. Currently only

the value 1 is supported. In this case arrays and associative arrays are
printed with newlines between indented elements for readability.

-T [scalar[=value| array|[=(value ...)] [sep | |

This flag has a different meaning when used with -f; see below. Other-
wise the -T option requires zero, two, or three arguments to be present.
With no arguments, the list of parameters created in this fashion is
shown. With two or three arguments, the first two are the name of a
scalar and of an array parameter (in that order) that will be tied to-
gether in the manner of $PATH and $path. The optional third argument
is a single-character separator which will be used to join the elements of
the array to form the scalar; if absent, a colon is used, as with $PATH.
Only the first character of the separator is significant; any remaining
characters are ignored. Multibyte characters are not yet supported.

Only one of the scalar and array parameters may be assigned an initial
value (the restrictions on assignment forms described above also apply).

Both the scalar and the array may be manipulated as normal. If one
is unset, the other will automatically be unset too. There is no way
of untying the variables without unsetting them, nor of converting the
type of one of them with another typeset command; +T does not work,
assigning an array to scalar is an error, and assigning a scalar to array
sets it to be a single-element array.

Note that both ‘typeset -xT ...’ and ‘export -T ...’ work, but only
the scalar will be marked for export. Setting the value using the scalar
version causes a split on all separators (which cannot be quoted). It is
possible to apply -T to two previously tied variables but with a different
separator character, in which case the variables remain joined as before
but the separator is changed.

When an existing scalar is tied to a new array, the value of the scalar
is preserved but no attribute other than export will be preserved.

Attribute flags that transform the final value (-L, -R, -Z, -1, -u) are only applied
to the expanded value at the point of a parameter expansion expression using ‘$’.
They are not applied when a parameter is retrieved internally by the shell for any

purpose.

The following attribute flags may be specified:

-A

L[n]

The names refer to associative array parameters; see Section 15.2 [Array
Parameters|, page 77.

Left justify and remove leading blanks from the value when the param-
eter is expanded. If n is nonzero, it defines the width of the field. If n
is zero, the width is determined by the width of the value of the first
assignment. In the case of numeric parameters, the length of the com-
plete value assigned to the parameter is used to determine the width,
not the value that would be output.

The width is the count of characters, which may be multibyte characters
if the MULTIBYTE option is in effect. Note that the screen width of the

Chapter 17: Shell Builtin Commands 152

character is not taken into account; if this is required, use padding
with parameter expansion flags ${(ml1...)...} as described in ‘Parameter
Expansion Flags’ in Section 14.3 [Parameter Expansion], page 47.

When the parameter is expanded, it is filled on the right with blanks
or truncated if necessary to fit the field. Note truncation can lead to
unexpected results with numeric parameters. Leading zeros are removed
if the -Z flag is also set.

Similar to -L, except that right justification is used; when the parameter
is expanded, the field is left filled with blanks or truncated from the end.
May not be combined with the -Z flag.

For arrays (but not for associative arrays), keep only the first occurrence
of each duplicated value. This may also be set for tied parameters (see
-T) or colon-separated special parameters like PATH or FIGNORE, etc.
Note the flag takes effect on assignment, and the type of the variable
being assigned to is determinative; for variables with shared values it is
therefore recommended to set the flag for all interfaces, e.g. ‘typeset
~U PATH path’.

This flag has a different meaning when used with -f; see below.

Specially handled if set along with the -L flag. Otherwise, similar to -R,
except that leading zeros are used for padding instead of blanks if the
first non-blank character is a digit. Numeric parameters are specially
handled: they are always eligible for padding with zeroes, and the zeroes
are inserted at an appropriate place in the output.

The names refer to array parameters. An array parameter may be
created this way, but it may be assigned to in the typeset statement
only if the reserved word form of typeset is enabled (as it is by default).
When displaying, both normal and associative arrays are shown.

The names refer to functions rather than parameters. No assignments
can be made, and the only other valid flags are -t, -T, -k, —u, -U and
-z. The flag =t turns on execution tracing for this function; the flag -T
does the same, but turns off tracing for any named (not anonymous)
function called from the present one, unless that function also has the
-t or -T flag. The -u and -U flags cause the function to be marked
for autoloading; -U also causes alias expansion to be suppressed when
the function is loaded. See the description of the ‘autoload’ builtin for
details.

Note that the builtin functions provides the same basic capabilities
as typeset -f but gives access to a few extra options; autoload gives
further additional options for the case typeset -fu and typeset -fU.

Hide: only useful for special parameters (those marked ‘<S>’ in the ta-
ble in Section 15.5 [Parameters Set By The Shell|, page 84), and for
local parameters with the same name as a special parameter, though
harmless for others. A special parameter with this attribute will not re-
tain its special effect when made local. Thus after ‘typeset -h PATH’,
a function containing ‘typeset PATH’ will create an ordinary local pa-
rameter without the usual behaviour of PATH. Alternatively, the local
parameter may itself be given this attribute; hence inside a function
‘typeset -h PATH’ creates an ordinary local parameter and the special
PATH parameter is not altered in any way. It is also possible to create

Chapter 17: Shell Builtin Commands 153

-u

a local parameter using ‘typeset +h special’, where the local copy of
special will retain its special properties regardless of having the -h at-
tribute. Global special parameters loaded from shell modules (currently
those in zsh/mapfile and zsh/parameter) are automatically given the
-h attribute to avoid name clashes.

Hide value: specifies that typeset will not display the value of the
parameter when listing parameters; the display for such parameters is
always as if the ‘+’ flag had been given. Use of the parameter is in
other respects normal, and the option does not apply if the parameter
is specified by name, or by pattern with the -m option. This is on
by default for the parameters in the zsh/parameter and zsh/mapfile
modules. Note, however, that unlike the -h flag this is also useful for
non-special parameters.

Use an internal integer representation. If n is nonzero it defines the out-
put arithmetic base, otherwise it is determined by the first assignment.
Bases from 2 to 36 inclusive are allowed.

Use an internal double-precision floating point representation. On out-
put the variable will be converted to scientific notation. If n is nonzero
it defines the number of significant figures to display; the default is ten.

Use an internal double-precision floating point representation. On out-
put the variable will be converted to fixed-point decimal notation. If n
is nonzero it defines the number of digits to display after the decimal
point; the default is ten.

Convert the result to lower case whenever the parameter is expanded.
The value is not converted when assigned.

The given names are marked readonly. Note that if name is a special
parameter, the readonly attribute can be turned on, but cannot then
be turned off.

If the POSIX_BUILTINS option is set, the readonly attribute is more
restrictive: unset variables can be marked readonly and cannot then be
set; furthermore, the readonly attribute cannot be removed from any
variable.

It is still possible to change other attributes of the variable though,
some of which like -U or -Z would affect the value. More generally, the
readonly attribute should not be relied on as a security mechanism.

Note that in zsh (like in pdksh but unlike most other shells) it is still
possible to create a local variable of the same name as this is considered
a different variable (though this variable, too, can be marked readonly).
Special variables that have been made readonly retain their value and
readonly attribute when made local.

Tags the named parameters. Tags have no special meaning to the shell.
This flag has a different meaning when used with -f; see above.

Convert the result to upper case whenever the parameter is expanded.
The value is not converted when assigned. This flag has a different
meaning when used with —f; see above.

Mark for automatic export to the environment of subsequently executed
commands. If the option GLOBAL_EXPORT is set, this implies the option

Chapter 17: Shell Builtin Commands 154

-g, unless +g is also explicitly given; in other words the parameter is
not made local to the enclosing function. This is for compatibility with
previous versions of zsh.

ulimit [-HSa | [{ ~bcdfiklmnpqrsTtvwx | -N resource } [limit | ...]
Set or display resource limits of the shell and the processes started by the shell.
The value of limit can be a number in the unit specified below or one of the values
‘unlimited’, which removes the limit on the resource, or ‘hard’, which uses the
current value of the hard limit on the resource.

By default, only soft limits are manipulated. If the -H flag is given use hard limits
instead of soft limits. If the -S flag is given together with the -H flag set both hard
and soft limits.

If no options are used, the file size limit (-f) is assumed.

If Iimit is omitted the current value of the specified resources are printed. When
more than one resource value is printed, the limit name and unit is printed before
each value.

When looping over multiple resources, the shell will abort immediately if it detects
a badly formed argument. However, if it fails to set a limit for some other reason it
will continue trying to set the remaining limits.

Not all the following resources are supported on all systems. Running ulimit -a
will show which are supported.

-a Lists all of the current resource limits.

-b Socket buffer size in bytes (N.B. not kilobytes)

-c 512-byte blocks on the size of core dumps.

-d Kilobytes on the size of the data segment.

-f 512-byte blocks on the size of files written.

-i The number of pending signals.

-k The number of kqueues allocated.

-1 Kilobytes on the size of locked-in memory.

-m Kilobytes on the size of physical memory.

-n open file descriptors.

-p The number of pseudo-terminals.

-q Bytes in POSIX message queues.

-r Maximum real time priority. On some systems where this is not avail-
able, such as NetBSD, this has the same effect as -T for compatibility
with sh.

-s Kilobytes on the size of the stack.

-T The number of simultaneous threads available to the user.

-t CPU seconds to be used.

-u The number of processes available to the user.

-v Kilobytes on the size of virtual memory. On some systems this refers to

the limit called ‘address space’.

-w Kilobytes on the size of swapped out memory.

Chapter 17: Shell Builtin Commands 155

-x The number of locks on files.

A resource may also be specified by integer in the form ‘-N resource’, where resource
corresponds to the integer defined for the resource by the operating system. This
may be used to set the limits for resources known to the shell which do not cor-
respond to option letters. Such limits will be shown by number in the output of
‘ulimit -a’.

The number may alternatively be out of the range of limits compiled into the shell.
The shell will try to read or write the limit anyway, and will report an error if this
fails.

umask [-S| [mask |
The umask is set to mask. mask can be either an octal number or a symbolic
value as described in the chmod(1) man page. If mask is omitted, the current
value is printed. The -S option causes the mask to be printed as a symbolic value.
Otherwise, the mask is printed as an octal number. Note that in the symbolic form
the permissions you specify are those which are to be allowed (not denied) to the
users specified.

unalias [-ams | name ...
Removes aliases. This command works the same as unhash -a, except that the
-a option removes all regular or global aliases, or with -s all suffix aliases: in this
case no name arguments may appear. The options -m (remove by pattern) and -s
without -a (remove listed suffix aliases) behave as for unhash -a. Note that the
meaning of -a is different between unalias and unhash.

unfunction
Same as unhash -f.

unhash [-adfms | name ...

Remove the element named name from an internal hash table. The default is remove
elements from the command hash table. The -a option causes unhash to remove
regular or global aliases; note when removing a global aliases that the argument
must be quoted to prevent it from being expanded before being passed to the com-
mand. The -s option causes unhash to remove suffix aliases. The -f option causes
unhash to remove shell functions. The -d options causes unhash to remove named
directories. If the -m flag is given the arguments are taken as patterns (should be
quoted) and all elements of the corresponding hash table with matching names will
be removed.

unlimit [-hs | resource ...
The resource limit for each resource is set to the hard limit. If the -h flag is given
and the shell has appropriate privileges, the hard resource limit for each resource is
removed. The resources of the shell process are only changed if the -s flag is given.

The unlimit command is not made available by default when the shell starts in a
mode emulating another shell. It can be made available with the command ‘zmod-
load -F zsh/rlimits b:unlimit’.

unset [-fmv | name ...
Each named parameter is unset. Local parameters remain local even if unset; they
appear unset within scope, but the previous value will still reappear when the scope
ends.

Individual elements of associative array parameters may be unset by using subscript
syntax on name, which should be quoted (or the entire command prefixed with
noglob) to protect the subscript from filename generation.

Chapter 17:

Shell Builtin Commands 156

If the -m flag is specified the arguments are taken as patterns (should be quoted)
and all parameters with matching names are unset. Note that this cannot be used
when unsetting associative array elements, as the subscript will be treated as part
of the pattern.

The -v flag specifies that name refers to parameters. This is the default behaviour.

unset -f is equivalent to unfunction.

unsetopt [{+|-}options | {+|-}o option_name | [name ...]

vared

wait [job ...

Unset the options for the shell. All options specified either with flags or by name
are unset. If no arguments are supplied, the names of all options currently unset are
printed. If the -m flag is given the arguments are taken as patterns (which should be
quoted to preserve them from being interpreted as glob patterns), and all options
with names matching these patterns are unset.

See Section 18.3 [Zle Builtins], page 165.

]

Wait for the specified jobs or processes. If job is not given then all currently active
child processes are waited for. Each job can be either a job specification or the
process ID of a job in the job table. The exit status from this command is that of
the job waited for. If job represents an unknown job or process ID, a warning is
printed (unless the POSIX_BUILTINS option is set) and the exit status is 127.

It is possible to wait for recent processes (specified by process ID, not by job)
that were running in the background even if the process has exited. Typically the
process ID will be recorded by capturing the value of the variable $! immediately
after the process has been started. There is a limit on the number of process IDs
remembered by the shell; this is given by the value of the system configuration
parameter CHILD_MAX. When this limit is reached, older process IDs are discarded,
least recently started processes first.

Note there is no protection against the process ID wrapping, i.e. if the wait is not
executed soon enough there is a chance the process waited for is the wrong one. A
conflict implies both process IDs have been generated by the shell, as other processes
are not recorded, and that the user is potentially interested in both, so this problem
is intrinsic to process IDs.

whence [-vcwfpamsS | [-x num | name ...

For each name, indicate how it would be interpreted if used as a command name.

If name is not an alias, built-in command, external command, shell function, hashed
command, or a reserved word, the exit status shall be non-zero, and — if -v, -c, or
-w was passed — a message will be written to standard output. (This is different
from other shells that write that message to standard error.)

whence is most useful when name is only the last path component of a command,
i.e. does not include a ‘/’; in particular, pattern matching only succeeds if just the
non-directory component of the command is passed.

-v Produce a more verbose report.
-c Print the results in a csh-like format. This takes precedence over -v.
-w For each name, print ‘name: word’ where word is one of alias,

builtin, command, function, hashed, reserved or none, according
as name corresponds to an alias, a built-in command, an external com-
mand, a shell function, a command defined with the hash builtin, a
reserved word, or is not recognised. This takes precedence over -v and
-c.

Chapter 17: Shell Builtin Commands 157

-f Causes the contents of a shell function to be displayed, which would
otherwise not happen unless the -c flag were used.

-p Do a path search for name even if it is an alias, reserved word, shell
function or builtin.

-a Do a search for all occurrences of name throughout the command path.
Normally only the first occurrence is printed.

-m The arguments are taken as patterns (pattern characters should be
quoted), and the information is displayed for each command matching
one of these patterns.

-s If a pathname contains symlinks, print the symlink-free pathname as
well.
-S As -s, but if the pathname had to be resolved by following multiple

symlinks, the intermediate steps are printed, too. The symlink resolved
at each step might be anywhere in the path.

-X num Expand tabs when outputting shell functions using the -c option. This
has the same effect as the —x option to the functions builtin.

where [-wpmsS | [-x num | name ...
Equivalent to whence -ca.

which [-wpamsS | [-x num | name ...
Equivalent to whence -c.

zcompile [-U][-z | -k | [-R | -M] file [name ... |

zcompile —ca [-m | [-R | -M] file [name ...]

zcompile -t file [name ... |
This builtin command can be used to compile functions or scripts, storing the com-
piled form in a file, and to examine files containing the compiled form. This allows
faster autoloading of functions and sourcing of scripts by avoiding parsing of the
text when the files are read.

The first form (without the -c, —a or -t options) creates a compiled file. If only
the file argument is given, the output file has the name ‘file.zwc’ and will be placed
in the same directory as the file. The shell will load the compiled file instead of
the normal function file when the function is autoloaded; see Chapter 9 [Functions|,
page 22, for a description of how autoloaded functions are searched. The extension
.zwc stands for ‘zsh word code’.

If there is at least one name argument, all the named files are compiled into the
output file given as the first argument. If file does not end in .zwc, this extension
is automatically appended. Files containing multiple compiled functions are called
‘digest’ files, and are intended to be used as elements of the FPATH/fpath special
array.

The second form, with the -c or —a options, writes the compiled definitions for all
the named functions into file. For -c, the names must be functions currently defined
in the shell, not those marked for autoloading. Undefined functions that are marked
for autoloading may be written by using the -a option, in which case the fpath
is searched and the contents of the definition files for those functions, if found, are
compiled into file. If both -c and -a are given, names of both defined functions and
functions marked for autoloading may be given. In either case, the functions in files
written with the -c or —a option will be autoloaded as if the KSH_AUTOLOAD option
were unset.

Chapter 17: Shell Builtin Commands 158

The reason for handling loaded and not-yet-loaded functions with different options
is that some definition files for autoloading define multiple functions, including the
function with the same name as the file, and, at the end, call that function. In such
cases the output of ‘zcompile -c’ does not include the additional functions defined
in the file, and any other initialization code in the file is lost. Using ‘zcompile -a’
captures all this extra information.

If the -m option is combined with —c or —a, the names are used as patterns and all
functions whose names match one of these patterns will be written. If no name is
given, the definitions of all functions currently defined or marked as autoloaded will
be written.

Note the second form cannot be used for compiling functions that include redi-
rections as part of the definition rather than within the body of the function; for

example

fn1() { { ... } >/logfile }
can be compiled but

fn1() { ... } > /logfile

cannot. It is possible to use the first form of zcompile to compile autoloadable
functions that include the full function definition instead of just the body of the
function.

The third form, with the -t option, examines an existing compiled file. Without
further arguments, the names of the original files compiled into it are listed. The
first line of output shows the version of the shell which compiled the file and how
the file will be used (i.e. by reading it directly or by mapping it into memory). With
arguments, nothing is output and the return status is set to zero if definitions for
all names were found in the compiled file, and non-zero if the definition for at least
one name was not found.

Other options:
-U Aliases are not expanded when compiling the named files.

-R When the compiled file is read, its contents are copied into the shell’s
memory, rather than memory-mapped (see -M). This happens automat-
ically on systems that do not support memory mapping.

When compiling scripts instead of autoloadable functions, it is often de-
sirable to use this option; otherwise the whole file, including the code to
define functions which have already been defined, will remain mapped,
consequently wasting memory.

-M The compiled file is mapped into the shell’s memory when read. This is
done in such a way that multiple instances of the shell running on the
same host will share this mapped file. If neither -R nor -M is given, the
zcompile builtin decides what to do based on the size of the compiled
file.

-z These options are used when the compiled file contains functions which
are to be autoloaded. If -z is given, the function will be autoloaded
as if the KSH_AUTOLOAD option is not set, even if it is set at the time
the compiled file is read, while if the -k is given, the function will be
loaded as if KSH_AUTOLOAD is set. These options also take precedence
over any -k or -z options specified to the autoload builtin. If neither
of these options is given, the function will be loaded as determined by

Chapter 17: Shell Builtin Commands 159

zformat
zftp

zle

the setting of the KSH_AUTOLOAD option at the time the compiled file is
read.

These options may also appear as many times as necessary between the
listed names to specify the loading style of all following functions, up
to the next -k or -z.

The created file always contains two versions of the compiled format, one for big-
endian machines and one for small-endian machines. The upshot of this is that the
compiled file is machine independent and if it is read or mapped, only one half of
the file is actually used (and mapped).

See Section 22.38 [The zsh/zutil Module|, page 342.
See Section 22.32 [The zsh/zftp Module], page 332.
See Section 18.3 [Zle Builtins], page 165.

zmodload [-dL | [-s | [...]

zmodload -F [-allme -P param | module | [+~]feature ...]
zmodload -e [-A][..]

zmodload [-a [-becpf [-I]]][-iL] ...

zmodload -u [—abedpf [-I]][-il] ...

zmodload -A [-L | [modalias[=module] ...]

zmodload -R modalias ...

Performs operations relating to zsh’s loadable modules. Loading of modules while
the shell is running (‘dynamical loading’) is not available on all operating systems,
or on all installations on a particular operating system, although the zmodload
command itself is always available and can be used to manipulate modules built
into versions of the shell executable without dynamical loading.

Without arguments the names of all currently loaded binary modules are printed.
The -L option causes this list to be in the form of a series of zmodload commands.
Forms with arguments are:

zmodload [-is | name ...

zmodload -u [-i | name ...
In the simplest case, zmodload loads a binary module. The module
must be in a file with a name consisting of the specified name followed
by a standard suffix, usually ‘.so’ (‘.s1’ on HPUX). If the module to be
loaded is already loaded the duplicate module is ignored. If zmodload
detects an inconsistency, such as an invalid module name or circular
dependency list, the current code block is aborted. If it is available, the
module is loaded if necessary, while if it is not available, non-zero status
is silently returned. The option -i is accepted for compatibility but has
no effect.

The named module is searched for in the same way a command is, using
$module_path instead of $path. However, the path search is performed
even when the module name contains a ‘/’, which it usually does. There
is no way to prevent the path search.

If the module supports features (see below), zmodload tries to enable all
features when loading a module. If the module was successfully loaded
but not all features could be enabled, zmodload returns status 2.

If the option -s is given, no error is printed if the module was not
available (though other errors indicating a problem with the module
are printed). The return status indicates if the module was loaded.
This is appropriate if the caller considers the module optional.

Chapter 17: Shell Builtin Commands 160

With -u, zmodload unloads modules. The same name must be given
that was given when the module was loaded, but it is not necessary for
the module to exist in the file system. The -i option suppresses the
error if the module is already unloaded (or was never loaded).

Each module has a boot and a cleanup function. The module will not
be loaded if its boot function fails. Similarly a module can only be
unloaded if its cleanup function runs successfully.

zmodload -F [-almLe -P param | module | [+-]feature ... |

zmodload -F allows more selective control over the features provided by
modules. With no options apart from -F, the module named module
is loaded, if it was not already loaded, and the list of features is set to
the required state. If no features are specified, the module is loaded,
if it was not already loaded, but the state of features is unchanged.
Each feature may be preceded by a + to turn the feature on, or - to
turn it off; the + is assumed if neither character is present. Any feature
not explicitly mentioned is left in its current state; if the module was
not previously loaded this means any such features will remain disabled.
The return status is zero if all features were set, 1 if the module failed to
load, and 2 if some features could not be set (for example, a parameter
couldn’t be added because there was a different parameter of the same
name) but the module was loaded.

The standard features are builtins, conditions, parameters and math
functions; these are indicated by the prefix ‘b:’, ‘c:’ (‘C:’ for an infix
condition), ‘p:” and ‘f:’, respectively, followed by the name that the cor-
responding feature would have in the shell. For example, ‘b:strftime’
indicates a builtin named strftime and p:EPOCHSECONDS indicates a
parameter named EPOCHSECONDS. The module may provide other (‘ab-
stract’) features of its own as indicated by its documentation; these have
no prefix.

With -1 or -L, features provided by the module are listed. With -1
alone, a list of features together with their states is shown, one feature
per line. With -L alone, a zmodload -F command that would cause
enabled features of the module to be turned on is shown. With -1L,
a zmodload -F command that would cause all the features to be set
to their current state is shown. If one of these combinations is given
with the option -P param then the parameter param is set to an array
of features, either features together with their state or (if -L alone is
given) enabled features.

With the option -L the module name may be omitted; then a list of
all enabled features for all modules providing features is printed in the
form of zmodload -F commands. If -1 is also given, the state of both
enabled and disabled features is output in that form.

A set of features may be provided together with -1 or -L and a module
name; in that case only the state of those features is considered. Each
feature may be preceded by + or - but the character has no effect. If
no set of features is provided, all features are considered.

With -e, the command first tests that the module is loaded; if it is not,
status 1 is returned. If the module is loaded, the list of features given
as an argument is examined. Any feature given with no prefix is simply
tested to see if the module provides it; any feature given with a prefix

Chapter 17: Shell Builtin Commands 161

+ or - is tested to see if is provided and in the given state. If the tests
on all features in the list succeed, status 0 is returned, else status 1.

With -m, each entry in the given list of features is taken as a pattern
to be matched against the list of features provided by the module. An
initial + or — must be given explicitly. This may not be combined with
the —-a option as autoloads must be specified explicitly.

With -a, the given list of features is marked for autoload from the
specified module, which may not yet be loaded. An optional + may
appear before the feature name. If the feature is prefixed with -, any
existing autoload is removed. The options -1 and -L may be used
to list autoloads. Autoloading is specific to individual features; when
the module is loaded only the requested feature is enabled. Autoload
requests are preserved if the module is subsequently unloaded until an
explicit ‘zmodload -Fa module -feature’ is issued. It is not an error to
request an autoload for a feature of a module that is already loaded.

When the module is loaded each autoload is checked against the fea-
tures actually provided by the module; if the feature is not provided
the autoload request is deleted. A warning message is output; if the
module is being loaded to provide a different feature, and that autoload
is successful, there is no effect on the status of the current command.
If the module is already loaded at the time when zmodload -Fa is run,
an error message is printed and status 1 returned.

zmodload -Fa can be used with the -1, -L, —e and -P options for listing
and testing the existence of autoloadable features. In this case -1 is
ignored if -L is specified. zmodload -FaL with no module name lists
autoloads for all modules.

Note that only standard features as described above can be autoloaded;
other features require the module to be loaded before enabling.

zmodload -d [-L | [name]

zmodload -d name dep ...

zmodload -ud name [dep ... |
The -d option can be used to specify module dependencies. The modules
named in the second and subsequent arguments will be loaded before
the module named in the first argument.

With -d and one argument, all dependencies for that module are listed.
With -d and no arguments, all module dependencies are listed. This
listing is by default in a Makefile-like format. The -L option changes
this format to a list of zmodload -d commands.

If -d and -u are both used, dependencies are removed. If only one
argument is given, all dependencies for that module are removed.

zmodload -ab | -L]

zmodload -ab [-i | name [builtin ...]

zmodload -ub [-i | builtin ...
The -ab option defines autoloaded builtins. It defines the specified
builtins. When any of those builtins is called, the module specified
in the first argument is loaded and all its features are enabled (for
selective control of features use ‘zmodload -F -a’ as described above).
If only the name is given, one builtin is defined, with the same name
as the module. -i suppresses the error if the builtin is already defined

Chapter 17: Shell Builtin Commands 162

or autoloaded, but not if another builtin of the same name is already
defined.

With -ab and no arguments, all autoloaded builtins are listed, with the
module name (if different) shown in parentheses after the builtin name.
The -L option changes this format to a list of zmodload -a commands.

If -b is used together with the —u option, it removes builtins previously
defined with -ab. This is only possible if the builtin is not yet loaded. -i
suppresses the error if the builtin is already removed (or never existed).

Autoload requests are retained if the module is subsequently unloaded
until an explicit ‘zmodload -ub builtin’ is issued.

zmodload -ac [-IL |

zmodload -ac | -iI | name | cond ...]

zmodload -uc [-iI | cond ...
The -ac option is used to define autoloaded condition codes. The cond
strings give the names of the conditions defined by the module. The
optional -I option is used to define infix condition names. Without this
option prefix condition names are defined.

If given no condition names, all defined names are listed (as a series of
zmodload commands if the -L option is given).

The —uc option removes definitions for autoloaded conditions.

zmodload -ap [-L |

zmodload -ap [-i | name [parameter ... |

zmodload -up [-i | parameter ...
The -p option is like the -b and -c options, but makes zmodload work
on autoloaded parameters instead.

zmodload -af [-L |

zmodload -af [-i | name [function ... |

zmodload -uf | -i | function ...
The -f option is like the -b, -p, and -c options, but makes zmodload
work on autoloaded math functions instead.

zmodload -a [-L]

zmodload -a [-i | name [builtin ... |

zmodload -ua [-i | builtin ...
Equivalent to —ab and -ub.

zmodload -e [-A] [string ...]

The -e option without arguments lists all loaded modules; if the -A
option is also given, module aliases corresponding to loaded modules
are also shown. If arguments are provided, nothing is printed; the re-
turn status is set to zero if all strings given as arguments are names of
loaded modules and to one if at least on string is not the name of a
loaded module. This can be used to test for the availability of things
implemented by modules. In this case, any aliases are automatically
resolved and the -A flag is not used.

zmodload -A [-L | [modalias[=module] ...]
For each argument, if both modalias and module are given, define
modalias to be an alias for the module module. If the module modalias
is ever subsequently requested, either via a call to zmodload or implic-
itly, the shell will attempt to load module instead. If module is not

Chapter 18: Zsh Line Editor 163

given, show the definition of modalias. If no arguments are given, list
all defined module aliases. When listing, if the -L flag was also given,
list the definition as a zmodload command to recreate the alias.

The existence of aliases for modules is completely independent of
whether the name resolved is actually loaded as a module: while the
alias exists, loading and unloading the module under any alias has ex-
actly the same effect as using the resolved name, and does not affect
the connection between the alias and the resolved name which can be
removed either by zmodload -R or by redefining the alias. Chains of
aliases (i.e. where the first resolved name is itself an alias) are valid so
long as these are not circular. As the aliases take the same format as
module names, they may include path separators: in this case, there is
no requirement for any part of the path named to exist as the alias will
be resolved first. For example, ‘any/old/alias’ is always a valid alias.

Dependencies added to aliased modules are actually added to the re-
solved module; these remain if the alias is removed. It is valid to create
an alias whose name is one of the standard shell modules and which
resolves to a different module. However, if a module has dependencies,
it will not be possible to use the module name as an alias as the module
will already be marked as a loadable module in its own right.

Apart from the above, aliases can be used in the zmodload command
anywhere module names are required. However, aliases will not be
shown in lists of loaded modules with a bare ‘zmodload’.

zmodload -R modalias ...

For each modalias argument that was previously defined as a module
alias via zmodload -A, delete the alias. If any was not defined, an error
is caused and the remainder of the line is ignored.

Note that zsh makes no distinction between modules that were linked into the shell
and modules that are loaded dynamically. In both cases this builtin command has to
be used to make available the builtins and other things defined by modules (unless
the module is autoloaded on these definitions). This is true even for systems that

don’t support dynamic loading of modules.

zparseopts
See Section 22.38 [The zsh/zutil Module], page 342.

zprof See Section 22.35 [The zsh/zprof Module], page 339.
zpty See Section 22.36 [The zsh/zpty Module], page 340.
zZregexparse

See Section 22.38 [The zsh/zutil Module], page 342.

zsocket See Section 22.25 [The zsh/net/socket Module], page 322.

[

[
zstyle See Section 22.38 [The zsh/zutil Module|, page 342.
ztcp See Section 22.28 [The zsh/net/tcp Module], page 328.

18 Zsh Line Editor

Chapter 18: Zsh Line Editor 164

18.1 Description

If the ZLE option is set (which it is by default in interactive shells) and the shell input is attached
to the terminal, the user is able to edit command lines.

There are two display modes. The first, multiline mode, is the default. It only works if the TERM
parameter is set to a valid terminal type that can move the cursor up. The second, single line
mode, is used if TERM is invalid or incapable of moving the cursor up, or if the SINGLE_LINE_ZLE
option is set. This mode is similar to ksh, and uses no termcap sequences. If TERM is "emacs",
the ZLE option will be unset by default.

The parameters BAUD, COLUMNS, and LINES are also used by the line editor. See Section 15.6
[Parameters Used By The Shell], page 89.

The parameter zle_highlight is also used by the line editor; see Section 18.7 [Character High-
lighting], page 197. Highlighting of special characters and the region between the cursor and
the mark (as set with set-mark-command in Emacs mode, or by visual-mode in Vi mode) is
enabled by default; consult this reference for more information. Irascible conservatives will wish
to know that all highlighting may be disabled by the following setting:

zle_highlight=(none)

In many places, references are made to the numeric argument. This can by default be entered
in emacs mode by holding the alt key and typing a number, or pressing escape before each
digit, and in vi command mode by typing the number before entering a command. Generally
the numeric argument causes the next command entered to be repeated the specified number
of times, unless otherwise noted below; this is implemented by the digit-argument widget.
See also Section 18.6.4 [Arguments]|, page 190for some other ways the numeric argument can be
modified.

18.2 Keymaps
A keymap in ZLE contains a set of bindings between key sequences and ZLE commands. The
empty key sequence cannot be bound.

There can be any number of keymaps at any time, and each keymap has one or more names. If
all of a keymap’s names are deleted, it disappears. bindkey can be used to manipulate keymap
names.

Initially, there are eight keymaps:

emacs EMACS emulation

viins vi emulation - insert mode
vicmd vi emulation - command mode
viopp vi emulation - operator pending
visual vi emulation - selection active

isearch incremental search mode
command read a command name
.safe fallback keymap

The ‘.safe’ keymap is special. It can never be altered, and the name can never be removed.
However, it can be linked to other names, which can be removed. In the future other special
keymaps may be added; users should avoid using names beginning with ‘.’ for their own keymaps.

In addition to these names, either ‘emacs’ or ‘viins’ is also linked to the name ‘main’. If one
of the VISUAL or EDITOR environment variables contain the string ‘vi’ when the shell starts up

Chapter 18: Zsh Line Editor 165

then it will be ‘viins’, otherwise it will be ‘emacs’. bindkey’s -e and -v options provide a
convenient way to override this default choice.

When the editor starts up, it will select the ‘main’ keymap. If that keymap doesn’t exist, it will
use ‘.safe’ instead.

In the ‘.safe’ keymap, each single key is bound to self-insert, except for ~J (line feed) and
"M (return) which are bound to accept-line. This is deliberately not pleasant to use; if you
are using it, it means you deleted the main keymap, and you should put it back.

18.2.1 Reading Commands

When ZLE is reading a command from the terminal, it may read a sequence that is bound to
some command and is also a prefix of a longer bound string. In this case ZLE will wait a certain
time to see if more characters are typed, and if not (or they don’t match any longer string) it
will execute the binding. This timeout is defined by the KEYTIMEQUT parameter; its default is
0.4 sec. There is no timeout if the prefix string is not itself bound to a command.

The key timeout is also applied when ZLE is reading the bytes from a multibyte character string
when it is in the appropriate mode. (This requires that the shell was compiled with multibyte
mode enabled; typically also the locale has characters with the UTF-8 encoding, although any
multibyte encoding known to the operating system is supported.) If the second or a subsequent
byte is not read within the timeout period, the shell acts as if ? were typed and resets the input
state.

As well as ZLE commands, key sequences can be bound to other strings, by using ‘bindkey
-s’. When such a sequence is read, the replacement string is pushed back as input, and the
command reading process starts again using these fake keystrokes. This input can itself invoke
further replacement strings, but in order to detect loops the process will be stopped if there are
twenty such replacements without a real command being read.

A key sequence typed by the user can be turned into a command name for use in user-defined
widgets with the read-command widget, described in Section 18.6.6 [Miscellaneous|, page 192,
below.

18.2.2 Local Keymaps

While for normal editing a single keymap is used exclusively, in many modes a local keymap
allows for some keys to be customised. For example, in an incremental search mode, a binding
in the isearch keymap will override a binding in the main keymap but all keys that are not
overridden can still be used.

If a key sequence is defined in a local keymap, it will hide a key sequence in the global keymap
that is a prefix of that sequence. An example of this occurs with the binding of iw in viopp
as this hides the binding of i in vicmd. However, a longer sequence in the global keymap that
shares the same prefix can still apply so for example the binding of ~“Xa in the global keymap
will be unaffected by the binding of “Xb in the local keymap.

18.3 Zle Builtins

The ZLE module contains three related builtin commands. The bindkey command manipulates
keymaps and key bindings; the vared command invokes ZLE on the value of a shell parameter;
and the zle command manipulates editing widgets and allows command line access to ZLE
commands from within shell functions.

Chapter 18: Zsh Line Editor 166

bindkey
bindkey
bindkey
bindkey
bindkey
bindkey
bindkey
bindkey
bindkey
bindkey

options | =1 [-L | [keymap ...]
options | -d

options | -D keymap ..

options | -A old- keymap new-keymap
options | =N new-keymap [old-keymap]
options | -m

options | -r in-string ..

options | -s in-string out -string ..

options | in-string command .

options | | in-string]
bindkey’s options can be divided into three categories: keymap selection for the
current command, operation selection, and others. The keymap selection options
are:

-e Selects keymap ‘emacs’ for any operations by the current command,
and also links ‘emacs’ to ‘main’ so that it is selected by default the next
time the editor starts.

-v Selects keymap ‘viins’ for any operations by the current command,
and also links ‘viins’ to ‘main’ so that it is selected by default the next
time the editor starts.

-a Selects keymap ‘vicmd’ for any operations by the current command.

-M keymap
The keymap specifies a keymap name that is selected for any operations
by the current command.

If a keymap selection is required and none of the options above are used, the ‘main’
keymap is used. Some operations do not permit a keymap to be selected, namely:

-1 List all existing keymap names; if any arguments are given, list just
those keymaps.

If the -L option is also used, list in the form of bindkey commands to
create or link the keymaps. ‘bindkey -1L main’shows which keymap is
linked to ‘main’, if any, and hence if the standard emacs or vi emulation
is in effect. This option does not show the .safe keymap because it
cannot be created in that fashion; however, neither is ‘bindkey -1L
.safe’ reported as an error, it simply outputs nothing.

-d Delete all existing keymaps and reset to the default state.

-D keymap ...
Delete the named keymaps.

-A old-keymap new-keymap
Make the new-keymap name an alias for old-keymap, so that both names
refer to the same keymap. The names have equal standing; if either is
deleted, the other remains. If there is already a keymap with the new-
keymap name, it is deleted.

-N new-keymap [old-keymap |
Create a new keymap, named new-keymap. If a keymap already has
that name, it is deleted. If an old-keymap name is given, the new
keymap is initialized to be a duplicate of it, otherwise the new keymap
will be empty.

Chapter 18: Zsh Line Editor 167

To use a newly created keymap, it should be linked to main. Hence the sequence
of commands to create and use a new keymap ‘mymap’ initialized from the emacs
keymap (which remains unchanged) is:

bindkey -N mymap emacs

bindkey -A mymap main
Note that while ‘bindkey -A newmap main’ will work when newmap is emacs or
viins, it will not work for vicmd, as switching from vi insert to command mode
becomes impossible.

The following operations act on the ‘main’ keymap if no keymap selection option
was given:

-m Add the built-in set of meta-key bindings to the selected keymap. Only
keys that are unbound or bound to self-insert are affected.

-r in-string ...
Unbind the specified in-strings in the selected keymap. This is exactly
equivalent to binding the strings to undefined-key.

When -R is also used, interpret the in-strings as ranges.

When -p is also used, the in-strings specify prefixes. Any binding that
has the given in-string as a prefix, not including the binding for the
in-string itself, if any, will be removed. For example,
bindkey -rpM viins ’~[’

will remove all bindings in the vi-insert keymap beginning with an es-
cape character (probably cursor keys), but leave the binding for the
escape character itself (probably vi-cmd-mode). This is incompatible
with the option -R.

-s in-string out-string ...
Bind each in-string to each out-string. When in-string is typed, out-
string will be pushed back and treated as input to the line editor. When
-R is also used, interpret the in-strings as ranges.

Note that both in-string and out-string are subject to the same form of
interpretation, as described below.

in-string command ...
Bind each in-string to each command. When -R is used, interpret the
in-strings as ranges.

[in-string |

List key bindings. If an in-string is specified, the binding of that string
in the selected keymap is displayed. Otherwise, all key bindings in
the selected keymap are displayed. (As a special case, if the —e or -v
option is used alone, the keymap is not displayed - the implicit linking
of keymaps is the only thing that happens.)

When the option -p is used, the in-string must be present. The listing
shows all bindings which have the given key sequence as a prefix, not
including any bindings for the key sequence itself.

When the -L option is used, the list is in the form of bindkey commands
to create the key bindings.

When the -R option is used as noted above, a valid range consists of two charac-
ters, with an optional ‘=’ between them. All characters between the two specified,
inclusive, are bound as specified.

Chapter 18: Zsh Line Editor 168

vared

[
[
[
[

For either in-string or out-string, the following escape sequences are recognised:

\a bell character

\b backspace

\e, \E escape

\f form feed

\n linefeed (newline)
\r carriage return
\t horizontal tab

\v vertical tab

\NNN character code in octal
\xNN character code in hexadecimal

\ulNNNN unicode character code in hexadecimal

\UNNNNNNNN
unicode character code in hexadecimal

\M[-] X character with meta bit set
\C[-]X control character
X control character

In all other cases, ‘\’ escapes the following character. Delete is written as ‘"7’
Note that ‘\M~?” and ‘~\M?’ are not the same, and that (unlike emacs), the bindings
‘A\M-X" and ‘\eX’ are entirely distinct, although they are initialized to the same
bindings by ‘bindkey -m’.

-Aacghe | [-p prompt | [-r rprompt]
-M main-keymap | [-m vicmd-keymap |
-i init-widget | | -f finish-widget]

-t tty | name

The value of the parameter name is loaded into the edit buffer, and the line editor
is invoked. When the editor exits, name is set to the string value returned by the
editor. When the -c flag is given, the parameter is created if it doesn’t already
exist. The -a flag may be given with -c to create an array parameter, or the -A flag
to create an associative array. If the type of an existing parameter does not match
the type to be created, the parameter is unset and recreated. The -g flag may be
given to suppress warnings from the WARN_CREATE_GLOBAL and WARN_NESTED_VAR
options.

If an array or array slice is being edited, separator characters as defined in $IFS will
be shown quoted with a backslash, as will backslashes themselves. Conversely, when
the edited text is split into an array, a backslash quotes an immediately following
separator character or backslash; no other special handling of backslashes, or any
handling of quotes, is performed.

Individual elements of existing array or associative array parameters may be edited
by using subscript syntax on name. New elements are created automatically, even
without -c.

If the -p flag is given, the following string will be taken as the prompt to display
at the left. If the -r flag is given, the following string gives the prompt to display
at the right. If the -h flag is specified, the history can be accessed from ZLE. If

Chapter 18: Zsh Line Editor 169

zle
zle
zle
zle
zle
zle
zle
zle
zle
zle
zle
zle
zle
zle
zle

the -e flag is given, typing "D (Control-D) on an empty line causes vared to exit
immediately with a non-zero return value.

The -M option gives a keymap to link to the main keymap during editing, and the
-m option gives a keymap to link to the vicmd keymap during editing. For vi-style
editing, this allows a pair of keymaps to override viins and vicmd. For emacs-style
editing, only -M is normally needed but the -m option may still be used. On exit,
the previous keymaps will be restored.

Vared calls the usual ‘zle-line-init’ and ‘zle-line-finish’ hooks before and
after it takes control. Using the -i and -f options, it is possible to replace these
with other custom widgets.

If ‘~t tty’ is given, tty is the name of a terminal device to be used instead of the
default /dev/tty. If tty does not refer to a terminal an error is reported.

-1[-L | -a][string ... |

-D widget ...

-A old-widget new-widget

-N widget | function]

-f flag [flag... |

-C widget completion-widget function
-R [-c] [display-string | [string ...]
-M string

-U string

-K keymap

-F[-L | -w] [fd [handler]]

-1

-T [tc function | -r tc | -L |
widget [-n num | [-f flag | [-Nw | [-K keymap | args ...

The zle builtin performs a number of different actions concerning ZLE.

With no options and no arguments, only the return status will be set. It is zero if
ZLE is currently active and widgets could be invoked using this builtin command
and non-zero otherwise. Note that even if non-zero status is returned, zle may still
be active as part of the completion system; this does not allow direct calls to ZLE
widgets.

Otherwise, which operation it performs depends on its options:

-1[-L | -a] [string |
List all existing user-defined widgets. If the -L option is used, list in
the form of z1le commands to create the widgets.

When combined with the -a option, all widget names are listed, includ-
ing the builtin ones. In this case the -L option is ignored.

If at least one string is given, and -a is present or -L is not used, nothing
will be printed. The return status will be zero if all strings are names
of existing widgets and non-zero if at least one string is not a name of a
defined widget. If -a is also present, all widget names are used for the
comparison including builtin widgets, else only user-defined widgets are
used.

If at least one string is present and the -L option is used, user-defined
widgets matching any string are listed in the form of z1le commands to
create the widgets.

Chapter 18: Zsh Line Editor 170

-D widget ...
Delete the named widgets.

-A old-widget new-widget
Make the new-widget name an alias for old-widget, so that both names
refer to the same widget. The names have equal standing; if either is
deleted, the other remains. If there is already a widget with the new-
widget name, it is deleted.

-N widget | function |
Create a user-defined widget. If there is already a widget with the
specified name, it is overwritten. When the new widget is invoked from
within the editor, the specified shell function is called. If no function
name is specified, it defaults to the same name as the widget. For
further information, see Section 18.4 [Zle Widgets]|, page 174.

-f flag | flag... |
Set various flags on the running widget. Possible values for flag are:

yank for indicating that the widget has yanked text into the buffer. If
the widget is wrapping an existing internal widget, no further action is
necessary, but if it has inserted the text manually, then it should also
take care to set YANK_START and YANK_END correctly. yankbefore does
the same but is used when the yanked text appears after the cursor.

kill for indicating that text has been killed into the cutbuffer. When
repeatedly invoking a kill widget, text is appended to the cutbuffer
instead of replacing it, but when wrapping such widgets, it is necessary
to call ‘zle -f kill’ to retain this effect.

vichange for indicating that the widget represents a vi change that
can be repeated as a whole with ‘vi-repeat-change’. The flag should
be set early in the function before inspecting the value of NUMERIC or
invoking other widgets. This has no effect for a widget invoked from
insert mode. If insert mode is active when the widget finishes, the
change extends until next returning to command mode.

-C widget completion-widget function
Create a user-defined completion widget named widget. The comple-
tion widget will behave like the built-in completion-widget whose name
is given as completion-widget. To generate the completions, the shell
function function will be called. For further information, see Chapter 19
[Completion Widgets], page 200.

-R [-c | [display-string | [string ...]
Redisplay the command line. If a display-string is given and not empty,
this is shown in the status line (immediately below the line being edited).

If the optional strings are given they are listed below the prompt in the
same way as completion lists are printed. If no strings are given but
the -c option is used such a list is cleared.

Note that immediately after returning from running widgets, the com-
mand line will be redisplayed and the strings displayed will be erased.
Therefore, this option is only useful for widgets that do not exit imme-
diately after using it.

This command can safely be called outside user defined widgets; if zle
is active, the display will be refreshed, while if zle is not active, the

Chapter 18: Zsh Line Editor 171

-M string

-U string

-K keymap

command has no effect. In this case there will usually be no other
arguments.

The status is zero if zle was active, else one.

As with the -R option, the string will be displayed below the command
line; unlike the -R option, the string will not be put into the status line
but will instead be printed normally below the prompt. This means
that the string will still be displayed after the widget returns (until it
is overwritten by subsequent commands).

This pushes the characters in the string onto the input stack of ZLE.
After the widget currently executed finishes ZLE will behave as if the
characters in the string were typed by the user.

As ZLE uses a stack, if this option is used repeatedly the last string
pushed onto the stack will be processed first. However, the characters
in each string will be processed in the order in which they appear in the
string.

Selects the keymap named keymap. An error message will be displayed
if there is no such keymap.

This keymap selection affects the interpretation of following keystrokes
within this invocation of ZLE. Any following invocation (e.g., the next
command line) will start as usual with the ‘main’ keymap selected.

-F[-L | -w | [fd [handler | |

Only available if your system supports one of the ‘poll’ or ‘select’ system
calls; most modern systems do.

Installs handler (the name of a shell function) to handle input from file
descriptor fd. Installing a handler for an fd which is already handled
causes the existing handler to be replaced. Any number of handlers for
any number of readable file descriptors may be installed. Note that zle
makes no attempt to check whether this fd is actually readable when
installing the handler. The user must make their own arrangements for
handling the file descriptor when zle is not active.

When zle is attempting to read data, it will examine both the terminal
and the list of handled fd’s. If data becomes available on a handled
fd, zle calls handler with the fd which is ready for reading as the first
argument. Under normal circumstances this is the only argument, but
if an error was detected, a second argument provides details: ‘hup’ for a
disconnect, ‘nval’ for a closed or otherwise invalid descriptor, or ‘err’
for any other condition. Systems that support only the ‘select’ system
call always use ‘err’.

If the option -w is also given, the handler is instead a line editor widget,
typically a shell function made into a widget using ‘zle -N’. In that case
handler can use all the facilities of zle to update the current editing line.
Note, however, that as handling fd takes place at a low level changes to
the display will not automatically appear; the widget should call ‘zle
-R’ to force redisplay. As of this writing, widget handlers only support
a single argument and thus are never passed a string for error state, so
widgets must be prepared to test the descriptor themselves.

Chapter 18: Zsh Line Editor 172

If either type of handler produces output to the terminal, it should call
‘zle -1’ before doing so (see below). Handlers should not attempt to
read from the terminal.

If no handler is given, but an fd is present, any handler for that fd is
removed. If there is none, an error message is printed and status 1 is
returned.

If no arguments are given, or the -L option is supplied, a list of handlers
is printed in a form which can be stored for later execution.

An fd (but not a handler) may optionally be given with the -L option;
in this case, the function will list the handler if any, else silently return
status 1.

Note that this feature should be used with care. Activity on one of the
fd’s which is not properly handled can cause the terminal to become
unusable. Removing an fd handler from within a signal trap may cause
unpredictable behavior.

Here is a simple example of using this feature. A connection to a remote
TCP port is created using the ztcp command; see Section 22.28 [The
zsh /net /tcp Module], page 328. Then a handler is installed which simply
prints out any data which arrives on this connection. Note that ‘select’
will indicate that the file descriptor needs handling if the remote side
has closed the connection; we handle that by testing for a failed read.

if ztcp pwspc 2811; then
tcpfd=$REPLY
handler() {
zle -1
local line
if ! read -r line <&$1; then
select marks this fd if we reach EOF,
so handle this specially.
print "[Read on fd $1 failed, removing.]" >&2
zle -F $1
return 1
fi
print -r - $line
b
zle -F $tcpfd handler
fi

Unusually, this option is most useful outside ordinary widget functions,
though it may be used within if normal output to the terminal is re-
quired. It invalidates the current zle display in preparation for output;
typically this will be from a trap function. It has no effect if zle is not
active. When a trap exits, the shell checks to see if the display needs
restoring, hence the following will print output in such a way as not to
disturb the line being edited:
TRAPUSR1() {

Invalidate zle display

[[-0 zle 1] && zle -I

Show output

print Hello

}

Chapter 18: Zsh Line Editor 173

In general, the trap function may need to test whether zle is active before
using this method (as shown in the example), since the zsh/zle module
may not even be loaded; if it is not, the command can be skipped.

It is possible to call ‘zle -I’ several times before control is returned to
the editor; the display will only be invalidated the first time to minimise
disruption.

Note that there are normally better ways of manipulating the display
from within zle widgets; see, for example, ‘zle -R’ above.

The returned status is zero if zle was invalidated, even though this may
have been by a previous call to ‘zle -I’ or by a system notification.
To test if a zle widget may be called at this point, execute zle with no
arguments and examine the return status.

This is used to add, list or remove internal transformations on the pro-
cessing performed by the line editor. It is typically used only for debug-
ging or testing and is therefore of little interest to the general user.

‘zle -T transformation func’ specifies that the given transformation
(see below) is effected by shell function func.

‘zle -Tr transformation’ removes the given transformation if it was
present (it is not an error if none was).

‘zle -TL’ can be used to list all transformations currently in operation.

Currently the only transformation is tc. This is used instead of out-
putting termcap codes to the terminal. When the transformation is in
operation the shell function is passed the termcap code that would be
output as its first argument; if the operation required a numeric argu-
ment, that is passed as a second argument. The function should set the
shell variable REPLY to the transformed termcap code. Typically this is
used to produce some simply formatted version of the code and optional
argument for debugging or testing. Note that this transformation is not
applied to other non-printing characters such as carriage returns and
newlines.

widget [-n num | [-f flag | [-Nw] [-K keymap | args ...

Invoke the specified widget. This can only be done when ZLE is active;
normally this will be within a user-defined widget.

With the options -n and -N, the current numeric argument will be saved
and then restored after the call to widget; ‘-n num’ sets the numeric
argument temporarily to num, while ‘=N’ sets it to the default, i.e. as if
there were none.

With the option -K, keymap will be used as the current keymap during
the execution of the widget. The previous keymap will be restored when
the widget exits.

Normally, calling a widget in this way does not set the special parameter
WIDGET and related parameters, so that the environment appears as if
the top-level widget called by the user were still active. With the option
-w, WIDGET and related parameters are set to reflect the widget being
executed by the zle call.

Normally, when widget returns the special parameter LASTWIDGET will
point to it. This can be inhibited by passing the option -f nolast.

Any further arguments will be passed to the widget; note that as stan-
dard argument handling is performed, any general argument list should

Chapter 18: Zsh Line Editor 174

be preceded by --. If it is a shell function, these are passed down as
positional parameters; for builtin widgets it is up to the widget in ques-
tion what it does with them. Currently arguments are only handled by
the incremental-search commands, the history-search-forward and
-backward and the corresponding functions prefixed by vi-, and by
universal-argument. No error is flagged if the command does not use
the arguments, or only uses some of them.

The return status reflects the success or failure of the operation carried
out by the widget, or if it is a user-defined widget the return status of
the shell function.

A non-zero return status causes the shell to beep when the widget exits,
unless the BEEP options was unset or the widget was called via the zle
command. Thus if a user defined widget requires an immediate beep, it
should call the beep widget directly.

18.4 Zle Widgets

All actions in the editor are performed by ‘widgets’. A widget’s job is simply to perform some
small action. The ZLE commands that key sequences in keymaps are bound to are in fact
widgets. Widgets can be user-defined or built in.

The standard widgets built into ZLE are listed in Section 18.6 [Standard Widgets|, page 180.
Other built-in widgets can be defined by other modules (see Chapter 22 [Zsh Modules|, page 294).
Each built-in widget has two names: its normal canonical name, and the same name preceded
by a ‘.’. The ‘.’ name is special: it can’t be rebound to a different widget. This makes the
widget available even when its usual name has been redefined.

User-defined widgets are defined using ‘zle -N’, and implemented as shell functions. When the
widget is executed, the corresponding shell function is executed, and can perform editing (or
other) actions. It is recommended that user-defined widgets should not have names starting
with ‘..

18.5 User-Defined Widgets

User-defined widgets, being implemented as shell functions, can execute any normal shell com-
mand. They can also run other widgets (whether built-in or user-defined) using the zle builtin
command. The standard input of the function is redirected from /dev/null to prevent external
commands from unintentionally blocking ZLE by reading from the terminal, but read -k or
read -q can be used to read characters. Finally, they can examine and edit the ZLE buffer
being edited by reading and setting the special parameters described below.

These special parameters are always available in widget functions, but are not in any way special
outside ZLE. If they have some normal value outside ZLE, that value is temporarily inaccessible,
but will return when the widget function exits. These special parameters in fact have local scope,
like parameters created in a function using local.
Inside completion widgets and traps called while ZLE is active, these parameters are available
read-only.
Note that the parameters appear as local to any ZLE widget in which they appear. Hence if it
is desired to override them this needs to be done within a nested function:
widget-function() {
$WIDGET here refers to the special variable
that is local inside widget-function

O A1

This anonymous nested function allows WIDGET

Chapter 18: Zsh Line Editor 175

to be used as a local variable. The -h
removes the special status of the variable.
local -h WIDGET
}
}

BUFFER (scalar)
The entire contents of the edit buffer. If it is written to, the cursor remains at the
same offset, unless that would put it outside the buffer.

BUFFERLINES (integer)
The number of screen lines needed for the edit buffer currently displayed on screen
(i.e. without any changes to the preceding parameters done after the last redisplay);
read-only.

CONTEXT (scalar)
The context in which zle was called to read a line; read-only. One of the values:

start The start of a command line (at prompt PS1).

cont A continuation to a command line (at prompt PS2).
select In a select loop (at prompt PS3).

vared Editing a variable in vared.

CURSOR (integer)
The offset of the cursor, within the edit buffer. This is in the range 0 to $#BUFFER,
and is by definition equal to $#LBUFFER. Attempts to move the cursor outside the
buffer will result in the cursor being moved to the appropriate end of the buffer.

CUTBUFFER (scalar)
The last item cut using one of the ‘kill-’ commands; the string which the next yank
would insert in the line. Later entries in the kill ring are in the array killring.
Note that the command ‘zle copy-region-as-kill string’ can be used to set the
text of the cut buffer from a shell function and cycle the kill ring in the same way
as interactively killing text.

HISTNO (integer)
The current history number. Setting this has the same effect as moving up or down
in the history to the corresponding history line. An attempt to set it is ignored if
the line is not stored in the history. Note this is not the same as the parameter
HISTCMD, which always gives the number of the history line being added to the main
shell’s history. HISTNO refers to the line being retrieved within zle.

ISEARCHMATCH_ACTIVE (integer)

ISEARCHMATCH_START (integer)

ISEARCHMATCH_END (integer)
ISEARCHMATCH_ACTIVE indicates whether a part of the BUFFER is currently matched
by an incremental search pattern. ISEARCHMATCH_START and ISEARCHMATCH_END
give the location of the matched part and are in the same units as CURSOR. They
are only valid for reading when ISEARCHMATCH_ACTIVE is non-zero.

All parameters are read-only.

KEYMAP (scalar)
The name of the currently selected keymap; read-only.

KEYS (scalar)
The keys typed to invoke this widget, as a literal string; read-only.

Chapter 18: Zsh Line Editor 176

KEYS_QUEUED_COUNT (integer)
The number of bytes pushed back to the input queue and therefore available for
reading immediately before any I/0 is done; read-only. See also PENDING; the two
values are distinct.

killring (array)
The array of previously killed items, with the most recently killed first. This gives
the items that would be retrieved by a yank-pop in the same order. Note, however,
that the most recently killed item is in $CUTBUFFER; $killring shows the array of
previous entries.

The default size for the kill ring is eight, however the length may be changed by
normal array operations. Any empty string in the kill ring is ignored by the yank-
pop command, hence the size of the array effectively sets the maximum length of
the kill ring, while the number of non-zero strings gives the current length, both as
seen by the user at the command line.

LASTABORTEDSEARCH (scalar)
The last search string used by an interactive search that was aborted by the user
(status 3 returned by the search widget).

LASTSEARCH (scalar)
The last search string used by an interactive search; read-only. This is set even if
the search failed (status 0, 1 or 2 returned by the search widget), but not if it was
aborted by the user.

LASTWIDGET (scalar)
The name of the last widget that was executed; read-only.

LBUFFER (scalar)
The part of the buffer that lies to the left of the cursor position. If it is assigned
to, only that part of the buffer is replaced, and the cursor remains between the new
$LBUFFER and the old $RBUFFER.

MARK (integer)
Like CURSOR, but for the mark. With vi-mode operators that wait for a movement
command to select a region of text, setting MARK allows the selection to extend in
both directions from the initial cursor position.

NUMERIC (integer)
The numeric argument. If no numeric argument was given, this parameter is unset.
When this is set inside a widget function, builtin widgets called with the zle builtin
command will use the value assigned. If it is unset inside a widget function, builtin
widgets called behave as if no numeric argument was given.

PENDING (integer)
The number of bytes pending for input, i.e. the number of bytes which have already
been typed and can immediately be read. On systems where the shell is not able
to get this information, this parameter will always have a value of zero. Read-only.
See also KEYS_QUEUED_COUNT; the two values are distinct.

PREBUFFER (scalar)
In a multi-line input at the secondary prompt, this read-only parameter contains
the contents of the lines before the one the cursor is currently in.

PREDISPLAY (scalar)
Text to be displayed before the start of the editable text buffer. This does not
have to be a complete line; to display a complete line, a newline must be appended

Chapter 18: Zsh Line Editor 177

explicitly. The text is reset on each new invocation (but not recursive invocation)
of zle.

POSTDISPLAY (scalar)
Text to be displayed after the end of the editable text buffer. This does not have
to be a complete line; to display a complete line, a newline must be prepended
explicitly. The text is reset on each new invocation (but not recursive invocation)
of zle.

RBUFFER (scalar)
The part of the buffer that lies to the right of the cursor position. If it is assigned
to, only that part of the buffer is replaced, and the cursor remains between the old
$LBUFFER and the new $RBUFFER.

REGION_ACTIVE (integer)
Indicates if the region is currently active. It can be assigned 0 or 1 to deactivate and
activate the region respectively. A value of 2 activates the region in line-wise mode
with the highlighted text extending for whole lines only; see Section 18.7 [Character
Highlighting], page 197.

region_highlight (array)
Each element of this array may be set to a string that describes highlighting for an
arbitrary region of the command line that will take effect the next time the command
line is redisplayed. Highlighting of the non-editable parts of the command line in
PREDISPLAY and POSTDISPLAY are possible, but note that the P flag is needed for
character indexing to include PREDISPLAY.

Each string consists of the following whitespace-separated parts:

e Optionally, a ‘P’ to signify that the start and end offset that follow include any
string set by the PREDISPLAY special parameter; this is needed if the predisplay
string itself is to be highlighted. Whitespace between the ‘P’ and the start offset
is optional.

e A start offset in the same units as CURSOR.
e An end offset in the same units as CURSOR.

e A highlight specification in the same format as used for contexts in the param-
eter zle_highlight, see Section 18.7 [Character Highlighting], page 197; for
example, standout or fg=red,bold.

e Optionally, a string of the form ‘memo=token’. The token consists of everything
between the ‘=" and the next whitespace, comma, NUL, or the end of the string.
The token is preserved verbatim but not parsed in any way.

Plugins may use this to identify array elements they have added: for ex-
ample, a plugin might set token to its (the plugin’s) name and then use
‘region_highlight=(${region_highlight:#*memo=token})’in order to re-
move array elements it have added.

(This example uses the ‘${name:#pattern}’ array-grepping syntax described in
Section 14.3 [Parameter Expansion], page 47.)

For example,

region_highlight=("PO 20 bold memo=foobar")

specifies that the first twenty characters of the text including any predisplay string
should be highlighted in bold.

Note that the effect of region_highlight is not saved and disappears as soon as
the line is accepted.

Chapter 18: Zsh Line Editor 178

Note that zsh 5.8 and older do not support the ‘memo=token’ field and may misparse
the third (highlight specification) field when a memo is given.

The final highlighting on the command line depends on both region_highlight and
zle_highlight; see Section 18.7 [Character Highlighting], page 197, for details.

registers (associative array)
The contents of each of the vi register buffers. These are typically set using vi-
set-buffer followed by a delete, change or yank command.

SUFFIX_ACTIVE (integer)

SUFFIX_START (integer)

SUFFIX_END (integer)
SUFFIX_ACTIVE indicates whether an auto-removable completion suffix is currently
active. SUFFIX_START and SUFFIX_END give the location of the suffix and are in
the same units as CURSOR. They are only valid for reading when SUFFIX_ACTIVE is
non-zero.

All parameters are read-only.

UNDO_CHANGE_NO (integer)
A number representing the state of the undo history. The only use of this is passing
as an argument to the undo widget in order to undo back to the recorded point.
Read-only.

UNDO_LIMIT_NO (integer)
A number corresponding to an existing change in the undo history; compare
UNDO_CHANGE_NOQ. If this is set to a value greater than zero, the undo command
will not allow the line to be undone beyond the given change number. It is still
possible to use ‘zle undo change’ in a widget to undo beyond that point; in that
case, it will not be possible to undo at all until UNDO_LIMIT_NO is reduced. Set to 0
to disable the limit.

A typical use of this variable in a widget function is as follows (note the additional
function scope is required):

O {
local UNDO_LIMIT_NO=$UNDO_CHANGE_NO
Perform some form of recursive edit.

¥

WIDGET (scalar)
The name of the widget currently being executed; read-only.

WIDGETFUNC (scalar)
The name of the shell function that implements a widget defined with either z1le -N
or zle -C. In the former case, this is the second argument to the zle -N command
that defined the widget, or the first argument if there was no second argument. In
the latter case this is the third argument to the zle -C command that defined the
widget. Read-only.

WIDGETSTYLE (scalar)
Describes the implementation behind the completion widget currently being exe-
cuted; the second argument that followed zle -C when the widget was defined.
This is the name of a builtin completion widget. For widgets defined with zle -N
this is set to the empty string. Read-only.

Chapter 18: Zsh Line Editor 179

YANK_ACTIVE (integer)

YANK_START (integer)

YANK_END (integer)
YANK_ACTIVE indicates whether text has just been yanked (pasted) into the buffer.
YANK_START and YANK_END give the location of the pasted text and are in the same
units as CURSOR. They are only valid for reading when YANK_ACTIVE is non-zero.
They can also be assigned by widgets that insert text in a yank-like fashion, for
example wrappers of bracketed-paste. See also zle -f.

YANK_ACTIVE is read-only.

ZLE_RECURSIVE (integer)
Usually zero, but incremented inside any instance of recursive-edit. Hence indi-
cates the current recursion level.

ZLE_RECURSIVE is read-only.

ZLE_STATE (scalar)
Contains a set of space-separated words that describe the current zle state.

Currently, the states shown are the insert mode as set by the overwrite-mode or
vi-replace widgets and whether history commands will visit imported entries as
controlled by the set-local-history widget. The string contains ‘insert’ if charac-
ters to be inserted on the command line move existing characters to the right or
‘overwrite’ if characters to be inserted overwrite existing characters. It contains
‘localhistory’ if only local history commands will be visited or ‘globalhistory’
if imported history commands will also be visited.

The substrings are sorted in alphabetical order so that if you want to test for two
specific substrings in a future-proof way, you can do match by doing:

if [[$ZLE_STATE == xglobalhistory*insert*]]; then ...; fi

18.5.1 Special Widgets

There are a few user-defined widgets which are special to the shell. If they do not exist, no
special action is taken. The environment provided is identical to that for any other editing
widget.

zle-isearch-exit
Executed at the end of incremental search at the point where the isearch prompt is
removed from the display. See zle-isearch-update for an example.

zle-isearch-update
Executed within incremental search when the display is about to be redrawn. Addi-
tional output below the incremental search prompt can be generated by using ‘zle
-M’ within the widget. For example,

zle-isearch-update() { zle -M "Line $HISTNO"; }
zle -N zle-isearch-update

Note the line output by ‘zle -M’ is not deleted on exit from incremental search.
This can be done from a zle-isearch-exit widget:

zle-isearch-exit() { zle -M ""; }
zle -N zle-isearch-exit

zle-line-pre-redraw
Executed whenever the input line is about to be redrawn, providing an opportunity
to update the region_highlight array.

Chapter 18: Zsh Line Editor 180

zle-line-init
Executed every time the line editor is started to read a new line of input. The
following example puts the line editor into vi command mode when it starts up.
zle-line-init() { zle -K vicmd; }
zle -N zle-line-init
(The command inside the function sets the keymap directly; it is equivalent to zle
vi-cmd-mode.)

zle-line-finish
This is similar to zle-line-init but is executed every time the line editor has
finished reading a line of input.

zle-history-line-set
Executed when the history line changes.

zle-keymap-select
Executed every time the keymap changes, i.e. the special parameter KEYMAP is set
to a different value, while the line editor is active. Initialising the keymap when the
line editor starts does not cause the widget to be called.

The value $KEYMAP within the function reflects the new keymap. The old keymap
is passed as the sole argument.

This can be used for detecting switches between the vi command (vicmd) and insert
(usually main) keymaps.

18.6 Standard Widgets

The following is a list of all the standard widgets, and their default bindings in emacs mode, vi
command mode and vi insert mode (the ‘emacs’; ‘vicmd’ and ‘viins’ keymaps, respectively).

Note that cursor keys are bound to movement keys in all three keymaps; the shell assumes that
the cursor keys send the key sequences reported by the terminal-handling library (termcap or
terminfo). The key sequences shown in the list are those based on the VT'100, common on many
modern terminals, but in fact these are not necessarily bound. In the case of the viins keymap,
the initial escape character of the sequences serves also to return to the vicmd keymap: whether
this happens is determined by the KEYTIMEOUT parameter, see Chapter 15 [Parameters], page 77.

18.6.1 Movement

vi-backward-blank-word (unbound) (B) (unbound)
Move backward one word, where a word is defined as a series of non-blank characters.

vi-backward-blank-word-end (unbound) (gE) (unbound)
Move to the end of the previous word, where a word is defined as a series of non-blank
characters.

backward-char ("B ESC-[D) (unbound) (unbound)
Move backward one character.

vi-backward-char (unbound) ("H h ~7?) (ESC-[D)
Move backward one character, without changing lines.

backward-word (ESC-B ESC-b) (unbound) (unbound)
Move to the beginning of the previous word.

emacs-backward-word
Move to the beginning of the previous word.

Chapter 18: Zsh Line Editor 181

vi-backward-word (unbound) (b) (unbound)
Move to the beginning of the previous word, vi-style.

vi-backward-word-end (unbound) (ge) (unbound)
Move to the end of the previous word, vi-style.

beginning-of-1line ("A) (unbound) (unbound)
Move to the beginning of the line. If already at the beginning of the line, move to
the beginning of the previous line, if any.

vi-beginning-of-line
Move to the beginning of the line, without changing lines.

down-line (unbound) (unbound) (unbound)
Move down a line in the buffer.

end-of-line ("E) (unbound) (unbound)
Move to the end of the line. If already at the end of the line, move to the end of the
next line, if any.

vi-end-of-line (unbound) ($) (unbound)
Move to the end of the line. If an argument is given to this command, the cursor
will be moved to the end of the line (argument - 1) lines down.

vi-forward-blank-word (unbound) (W) (unbound)
Move forward one word, where a word is defined as a series of non-blank characters.

vi-forward-blank-word-end (unbound) (E) (unbound)
Move to the end of the current word, or, if at the end of the current word, to the
end of the next word, where a word is defined as a series of non-blank characters.

forward-char ("F ESC-[C) (unbound) (unbound)
Move forward one character.

vi-forward-char (unbound) (space 1) (ESC-[C)
Move forward one character.

vi-find-next-char ("X°F) (f) (unbound)
Read a character from the keyboard, and move to the next occurrence of it in the
line.

vi-find-next-char-skip (unbound) (t) (unbound)
Read a character from the keyboard, and move to the position just before the next
occurrence of it in the line.

vi-find-prev-char (unbound) (F) (unbound)
Read a character from the keyboard, and move to the previous occurrence of it in
the line.

vi-find-prev-char-skip (unbound) (T) (unbound)
Read a character from the keyboard, and move to the position just after the previous
occurrence of it in the line.

vi-first-non-blank (unbound) (*) (unbound)
Move to the first non-blank character in the line.

vi-forward-word (unbound) (w) (unbound)
Move forward one word, vi-style.

forward-word (ESC-F ESC-f) (unbound) (unbound)
Move to the beginning of the next word. The editor’s idea of a word is specified
with the WORDCHARS parameter.

Chapter 18: Zsh Line Editor 182

emacs—-forward-word
Move to the end of the next word.

vi-forward-word-end (unbound) (e) (unbound)
Move to the end of the next word.

vi-goto-column (ESC-1|) (|) (unbound)
Move to the column specified by the numeric argument.

vi-goto-mark (unbound) (¢) (unbound)
Move to the specified mark.

vi-goto-mark-line (unbound) (’) (unbound)
Move to beginning of the line containing the specified mark.

vi-repeat-find (unbound) (;) (unbound)
Repeat the last vi-find command.

vi-rev-repeat-find (unbound) (,) (unbound)
Repeat the last vi-find command in the opposite direction.

up-line (unbound) (unbound) (unbound)
Move up a line in the buffer.

18.6.2 History Control

beginning-of-buffer-or-history (ESC-<) (gg) (unbound)
Move to the beginning of the buffer, or if already there, move to the first event in
the history list.

beginning-of-line-hist
Move to the beginning of the line. If already at the beginning of the buffer, move
to the previous history line.

beginning-of-history
Move to the first event in the history list.

down-line-or-history ("N ESC-[B) (j) (ESC-[B)
Move down a line in the buffer, or if already at the bottom line, move to the next
event in the history list.

vi-down-line-or-history (unbound) (+) (unbound)
Move down a line in the buffer, or if already at the bottom line, move to the next
event in the history list. Then move to the first non-blank character on the line.

down-line-or-search
Move down a line in the buffer, or if already at the bottom line, search forward in
the history for a line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

down-history (unbound) (°N) (unbound)
Move to the next event in the history list.

history-beginning-search-backward
Search backward in the history for a line beginning with the current line up to the
cursor. This leaves the cursor in its original position.

end-of-buffer-or-history (ESC->) (unbound) (unbound)
Move to the end of the buffer, or if already there, move to the last event in the
history list.

Chapter 18: Zsh Line Editor 183

end-of-line-hist
Move to the end of the line. If already at the end of the buffer, move to the next
history line.

end-of-history
Move to the last event in the history list.

vi-fetch-history (unbound) (G) (unbound)
Fetch the history line specified by the numeric argument. This defaults to the
current history line (i.e. the one that isn’t history yet).

history-incremental-search-backward ("R ~Xr) (unbound) (unbound)
Search backward incrementally for a specified string. The search is case-insensitive
if the search string does not have uppercase letters and no numeric argument was
given. The string may begin with ‘~’ to anchor the search to the beginning of the
line. When called from a user-defined function returns the following statuses: 0, if
the search succeeded; 1, if the search failed; 2, if the search term was a bad pattern;
3, if the search was aborted by the send-break command.

A restricted set of editing functions is available in the mini-buffer. Keys are looked
up in the special isearch keymap, and if not found there in the main keymap (note
that by default the isearch keymap is empty). An interrupt signal, as defined by
the stty setting, will stop the search and go back to the original line. An undefined
key will have the same effect. Note that the following always perform the same task
within incremental searches and cannot be replaced by user defined widgets, nor
can the set of functions be extended. The supported functions are:

accept-and-hold

accept-and-infer-next-history

accept-line

accept-line-and-down-history
Perform the usual function after exiting incremental search. The com-
mand line displayed is executed.

backward-delete-char

vi-backward-delete-char
Back up one place in the search history. If the search has been repeated
this does not immediately erase a character in the minibuffer.

accept-search
Exit incremental search, retaining the command line but performing no
further action. Note that this function is not bound by default and has
no effect outside incremental search.

backward-delete-word

backward-kill-word

vi-backward-kill-word
Back up one character in the minibuffer; if multiple searches have been
performed since the character was inserted the search history is rewound
to the point just before the character was entered. Hence this has the
effect of repeating backward-delete-char.

clear-screen
Clear the screen, remaining in incremental search mode.

history-incremental-search-backward
Find the next occurrence of the contents of the mini-buffer. If the
mini-buffer is empty, the most recent previously used search string is
reinstated.

Chapter 18: Zsh Line Editor 184

history-incremental-search-forward
Invert the sense of the search.

magic-space
Inserts a non-magical space.

quoted-insert
vi-quoted-insert
Quote the character to insert into the minibuffer.

redisplay
Redisplay the command line, remaining in incremental search mode.

vi-cmd-mode
Select the ‘vicmd’ keymap; the ‘main’ keymap (insert mode) will be
selected initially.

In addition, the modifications that were made while in vi insert mode
are merged to form a single undo event.

vi-repeat-search
vi-rev-repeat-search
Repeat the search. The direction of the search is indicated in the mini-

buffer.

Any character that is not bound to one of the above functions, or self-insert
or self-insert-unmeta, will cause the mode to be exited. The character is then
looked up and executed in the keymap in effect at that point.

When called from a widget function by the zle command, the incremental search
commands can take a string argument. This will be treated as a string of keys, as
for arguments to the bindkey command, and used as initial input for the command.
Any characters in the string which are unused by the incremental search will be
silently ignored. For example,

zle history-incremental-search-backward forceps

will search backwards for forceps, leaving the minibuffer containing the string
‘forceps’.

history-incremental-search-forward (S ~Xs) (unbound) (unbound)
Search forward incrementally for a specified string. The search is case-insensitive
if the search string does not have uppercase letters and no numeric argument was
given. The string may begin with ‘*’ to anchor the search to the beginning of
the line. The functions available in the mini-buffer are the same as for history-
incremental-search-backward.

history-incremental-pattern-search-backward

history-incremental-pattern-search-forward
These widgets behave similarly to the corresponding widgets with no -pattern, but
the search string typed by the user is treated as a pattern, respecting the current
settings of the various options affecting pattern matching. See Section 14.8 [File-
name Generation], page 65, for a description of patterns. If no numeric argument
was given lowercase letters in the search string may match uppercase letters in the
history. The string may begin with ‘~’ to anchor the search to the beginning of the
line.

The prompt changes to indicate an invalid pattern; this may simply indicate the
pattern is not yet complete.

Note that only non-overlapping matches are reported, so an expression with wild-
cards may return fewer matches on a line than are visible by inspection.

Chapter 18: Zsh Line Editor 185

history-search-backward (ESC-P ESC-p) (unbound) (unbound)
Search backward in the history for a line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

vi-history-search-backward (unbound) (/) (unbound)
Search backward in the history for a specified string. The string may begin with ‘~’
to anchor the search to the beginning of the line.

A restricted set of editing functions is available in the mini-buffer. An interrupt
signal, as defined by the stty setting, will stop the search. The functions available in
the mini-buffer are: accept-line, backward-delete-char, vi-backward-delete-
char, backward-kill-word, vi-backward-kill-word, clear-screen, redisplay,
quoted-insert and vi-quoted-insert.

vi-cmd-mode is treated the same as accept-line, and magic-space is treated as a
space. Any other character that is not bound to self-insert or self-insert-unmeta will
beep and be ignored. If the function is called from vi command mode, the bindings
of the current insert mode will be used.

If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

history-search-forward (ESC-N ESC-n) (unbound) (unbound)
Search forward in the history for a line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

vi-history-search-forward (unbound) (?) (unbound)
Search forward in the history for a specified string. The string may begin with <’
to anchor the search to the beginning of the line. The functions available in the
mini-buffer are the same as for vi-history-search-backward. Argument handling
is also the same as for that command.

infer-next-history ("X"N) (unbound) (unbound)
Search in the history list for a line matching the current one and fetch the event
following it.

insert-last-word (ESC-_ ESC-.) (unbound) (unbound)

Insert the last word from the previous history event at the cursor position. If a
positive numeric argument is given, insert that word from the end of the previous
history event. If the argument is zero or negative insert that word from the left
(zero inserts the previous command word). Repeating this command replaces the
word just inserted with the last word from the history event prior to the one just
used; numeric arguments can be used in the same way to pick a word from that
event.

When called from a shell function invoked from a user-defined widget, the command
can take one to three arguments. The first argument specifies a history offset which
applies to successive calls to this widget: if it is -1, the default behaviour is used,
while if it is 1, successive calls will move forwards through the history. The value 0
can be used to indicate that the history line examined by the previous execution of
the command will be reexamined. Note that negative numbers should be preceded
by a ‘==’ argument to avoid confusing them with options.

If two arguments are given, the second specifies the word on the command line in
normal array index notation (as a more natural alternative to the numeric argu-
ment). Hence 1 is the first word, and -1 (the default) is the last word.

Chapter 18: Zsh Line Editor 186

If a third argument is given, its value is ignored, but it is used to signify that the
history offset is relative to the current history line, rather than the one remembered
after the previous invocations of insert-last-word.
For example, the default behaviour of the command corresponds to

zle insert-last-word -- -1 -1
while the command

zle insert-last-word -- -1 1 -

always copies the first word of the line in the history immediately before the line
being edited. This has the side effect that later invocations of the widget will be
relative to that line.

vi-repeat-search (unbound) (n) (unbound)
Repeat the last vi history search.

vi-rev-repeat-search (unbound) (N) (unbound)
Repeat the last vi history search, but in reverse.

up-line-or-history ("P ESC-[A) (k) (ESC-[A)
Move up a line in the buffer, or if already at the top line, move to the previous event
in the history list.

vi-up-line-or-history (unbound) (=) (unbound)
Move up a line in the buffer, or if already at the top line, move to the previous event
in the history list. Then move to the first non-blank character on the line.

up-line-or-search
Move up a line in the buffer, or if already at the top line, search backward in the
history for a line beginning with the first word in the buffer.

If called from a function by the zle command with arguments, the first argument
is taken as the string for which to search, rather than the first word in the buffer.

up-history (unbound) (“P) (unbound)
Move to the previous event in the history list.

history-beginning-search-forward
Search forward in the history for a line beginning with the current line up to the
cursor. This leaves the cursor in its original position.

set-local-history
By default, history movement commands visit the imported lines as well as the
local lines. This widget lets you toggle this on and off, or set it with the numeric
argument. Zero for both local and imported lines and nonzero for only local lines.

18.6.3 Modifying Text

vi-add-eol (unbound) (A) (unbound)
Move to the end of the line and enter insert mode.

vi-add-next (unbound) (a) (unbound)
Enter insert mode after the current cursor position, without changing lines.

backward-delete-char ("H ~7) (unbound) (unbound)
Delete the character behind the cursor.

vi-backward-delete-char (unbound) (X) ("H)
Delete the character behind the cursor, without changing lines. If in insert mode,
this won’t delete past the point where insert mode was last entered.

Chapter 18: Zsh Line Editor 187

backward-delete-word
Delete the word behind the cursor.

backward-kill-line
Kill from the beginning of the line to the cursor position.

backward-kill-word ("W ESC-"H ESC-"7) (unbound) (unbound)
Kill the word behind the cursor.

vi-backward-kill-word (unbound) (unbound) (~W)
Kill the word behind the cursor, without going past the point where insert mode
was last entered.

capitalize-word (ESC-C ESC-c) (unbound) (unbound)
Capitalize the current word and move past it.

vi-change (unbound) (c) (unbound)
Read a movement command from the keyboard, and kill from the cursor position
to the endpoint of the movement. Then enter insert mode. If the command is
vi-change, change the current line.
For compatibility with vi, if the command is vi-forward-word or vi-forward-
blank-word, the whitespace after the word is not included. If you prefer the more
consistent behaviour with the whitespace included use the following key binding;:

bindkey -a -s cw dwi

vi-change-eol (unbound) (C) (unbound)
Kill to the end of the line and enter insert mode.

vi-change-whole-line (unbound) (S) (unbound)
Kill the current line and enter insert mode.

copy-region-as-kill (ESC-W ESC-w) (unbound) (unbound)
Copy the area from the cursor to the mark to the kill buffer.
If called from a ZLE widget function in the form ‘zle copy-region-as-kill string’
then string will be taken as the text to copy to the kill buffer. The cursor, the mark
and the text on the command line are not used in this case.

copy-prev-word (ESC-"_) (unbound) (unbound)
Duplicate the word to the left of the cursor.

copy-prev-shell-word
Like copy-prev-word, but the word is found by using shell parsing, whereas copy-
prev-word looks for blanks. This makes a difference when the word is quoted and
contains spaces.

vi-delete (unbound) (d) (unbound)
Read a movement command from the keyboard, and kill from the cursor position to
the endpoint of the movement. If the command is vi-delete, kill the current line.

delete-char
Delete the character under the cursor.

vi-delete-char (unbound) (x) (unbound)
Delete the character under the cursor, without going past the end of the line.

delete-word
Delete the current word.

down-case-word (ESC-L ESC-1) (unbound) (unbound)
Convert the current word to all lowercase and move past it.

Chapter 18: Zsh Line Editor 188

vi-down-case (unbound) (gu) (unbound)
Read a movement command from the keyboard, and convert all characters from
the cursor position to the endpoint of the movement to lowercase. If the movement
command is vi-down-case, swap the case of all characters on the current line.

kill-word (ESC-D ESC-d) (unbound) (unbound)
Kill the current word.

gosmacs-transpose-chars
Exchange the two characters behind the cursor.

vi-indent (unbound) (>) (unbound)
Indent a number of lines.

vi-insert (unbound) (i) (unbound)
Enter insert mode.

vi-insert-bol (unbound) (I) (unbound)
Move to the first non-blank character on the line and enter insert mode.

vi-join ("X~J) (J) (unbound)
Join the current line with the next one.
kill-line ("K) (unbound) (unbound)

Kill from the cursor to the end of the line. If already on the end of the line, kill the
newline character.

vi-kill-line (unbound) (unbound) (~U)
Kill from the cursor back to wherever insert mode was last entered.

vi-kill-eol (unbound) (D) (unbound)
Kill from the cursor to the end of the line.

kill-region
Kill from the cursor to the mark.

kill-buffer ("X"K) (unbound) (unbound)
Kill the entire buffer.

kill-whole-line (“U) (unbound) (unbound)
Kill the current line.

vi-match-bracket ("X"B) (%) (unbound)
Move to the bracket character (one of {}, (O or [1) that matches the one under the
cursor. If the cursor is not on a bracket character, move forward without going past
the end of the line to find one, and then go to the matching bracket.

vi-open-line-above (unbound) (0) (unbound)
Open a line above the cursor and enter insert mode.

vi-open-line-below (unbound) (o) (unbound)
Open a line below the cursor and enter insert mode.

vi-oper-swap-case (unbound) (g~) (unbound)
Read a movement command from the keyboard, and swap the case of all charac-
ters from the cursor position to the endpoint of the movement. If the movement
command is vi-oper-swap-case, swap the case of all characters on the current line.

overwrite-mode ("X~0) (unbound) (unbound)
Toggle between overwrite mode and insert mode.

Chapter 18: Zsh Line Editor 189

vi-put-before (unbound) (P) (unbound)
Insert the contents of the kill buffer before the cursor. If the kill buffer contains a
sequence of lines (as opposed to characters), paste it above the current line.

vi-put-after (unbound) (p) (unbound)
Insert the contents of the kill buffer after the cursor. If the kill buffer contains a
sequence of lines (as opposed to characters), paste it below the current line.

put-replace-selection (unbound) (unbound) (unbound)
Replace the contents of the current region or selection with the contents of the kill
buffer. If the kill buffer contains a sequence of lines (as opposed to characters), the
current line will be split by the pasted lines.

quoted-insert ("V) (unbound) (unbound)
Insert the next character typed into the buffer literally. An interrupt character will
not be inserted.

vi-quoted-insert (unbound) (unbound) (~Q ~V)
Display a ‘~’ at the cursor position, and insert the next character typed into the
buffer literally. An interrupt character will not be inserted.

quote-line (ESC-’) (unbound) (unbound)
Quote the current line; that is, put a
and convert all ‘>’ characters to *?\’’’.

Cy

character at the beginning and the end,

quote-region (ESC-") (unbound) (unbound)
Quote the region from the cursor to the mark.

vi-replace (unbound) (R) (unbound)
Enter overwrite mode.

vi-repeat-change (unbound) (.) (unbound)
Repeat the last vi mode text modification. If a count was used with the modi-
fication, it is remembered. If a count is given to this command, it overrides the
remembered count, and is remembered for future uses of this command. The cut
buffer specification is similarly remembered.

vi-replace-chars (unbound) (r) (unbound)
Replace the character under the cursor with a character read from the keyboard.

self-insert (printable characters) (unbound) (printable characters and some control
characters)
Insert a character into the buffer at the cursor position.

self-insert-unmeta (ESC-"I ESC-"J ESC-"M) (unbound) (unbound)
Insert a character into the buffer after stripping the meta bit and converting "M to
~J.

vi-substitute (unbound) (s) (unbound)

Substitute the next character(s).

vi-swap-case (unbound) (*) (unbound)
Swap the case of the character under the cursor and move past it.

transpose-chars ("T) (unbound) (unbound)
Exchange the two characters to the left of the cursor if at end of line, else exchange
the character under the cursor with the character to the left.

transpose-words (ESC-T ESC-t) (unbound) (unbound)
Exchange the current word with the one before it.

Chapter 18: Zsh Line Editor 190

With a positive numeric argument N, the word around the cursor, or following it if
the cursor is between words, is transposed with the preceding N words. The cursor
is put at the end of the resulting group of words.

With a negative numeric argument -N, the effect is the same as using a positive
argument N except that the original cursor position is retained, regardless of how
the words are rearranged.

vi-unindent (unbound) (<) (unbound)
Unindent a number of lines.

vi-up-case (unbound) (gU) (unbound)
Read a movement command from the keyboard, and convert all characters from
the cursor position to the endpoint of the movement to lowercase. If the movement
command is vi-up-case, swap the case of all characters on the current line.

up-case-word (ESC-U ESC-u) (unbound) (unbound)
Convert the current word to all caps and move past it.

yank (°Y) (unbound) (unbound)
Insert the contents of the kill buffer at the cursor position.

yank-pop (ESC-y) (unbound) (unbound)
Remove the text just yanked, rotate the kill-ring (the history of previously killed
text) and yank the new top. Only works following yank, vi-put-before, vi-put-
after or yank-pop.

vi-yank (unbound) (y) (unbound)
Read a movement command from the keyboard, and copy the region from the cursor
position to the endpoint of the movement into the kill buffer. If the command is
vi-yank, copy the current line.

vi-yank-whole-line (unbound) (Y) (unbound)
Copy the current line into the kill buffer.

vi-yank-eol
Copy the region from the cursor position to the end of the line into the kill buffer.
Arguably, this is what Y should do in vi, but it isn’t what it actually does.

18.6.4 Arguments

digit-argument (ESC-0..ESC-9) (1-9) (unbound)
Start a new numeric argument, or add to the current one. See also vi-digit-
or-beginning-of-line. This only works if bound to a key sequence ending in a
decimal digit.

Inside a widget function, a call to this function treats the last key of the key sequence
which called the widget as the digit.

neg-argument (ESC--) (unbound) (unbound)
Changes the sign of the following argument.

universal-argument
Multiply the argument of the next command by 4. Alternatively, if this command is
followed by an integer (positive or negative), use that as the argument for the next
command. Thus digits cannot be repeated using this command. For example, if
this command occurs twice, followed immediately by forward-char, move forward
sixteen spaces; if instead it is followed by -2, then forward-char, move backward
two spaces.

Chapter 18: Zsh Line Editor 191

Inside a widget function, if passed an argument, i.e. ‘zle universal-argument
num’, the numeric argument will be set to num; this is equivalent to ‘NUMERIC=num’.

argument-base
Use the existing numeric argument as a numeric base, which must be in the range 2
to 36 inclusive. Subsequent use of digit-argument and universal-argument will
input a new numeric argument in the given base. The usual hexadecimal convention
is used: the letter a or A corresponds to 10, and so on. Arguments in bases requiring
digits from 10 upwards are more conveniently input with universal-argument,
since ESC-a etc. are not usually bound to digit-argument.

The function can be used with a command argument inside a user-defined wid-
get. The following code sets the base to 16 and lets the user input a hexadecimal
argument until a key out of the digit range is typed:

zle argument-base 16
zle universal-argument

18.6.5 Completion

accept-and-menu-complete
In a menu completion, insert the current completion into the buffer, and advance
to the next possible completion.

complete-word
Attempt completion on the current word.

delete-char-or-list (°D) (unbound) (unbound)
Delete the character under the cursor. If the cursor is at the end of the line, list
possible completions for the current word.

expand-cmd-path
Expand the current command to its full pathname.

expand-or-complete (TAB) (unbound) (TAB)
Attempt shell expansion on the current word. If that fails, attempt completion.

expand-or-complete-prefix
Attempt shell expansion on the current word up to cursor.

expand-history (ESC-space ESC-!) (unbound) (unbound)
Perform history expansion on the edit buffer.

expand-word ("X*) (unbound) (unbound)
Attempt shell expansion on the current word.
list-choices (ESC-"D) ("D =) (°D)
List possible completions for the current word.
list-expand ("Xg "XG) ("G) ("G)
List the expansion of the current word.
magic-space
Perform history expansion and insert a space into the buffer. This is intended to be
bound to space.

menu-complete
Like complete-word, except that menu completion is used. See the MENU_COMPLETE
option.

menu-expand-or-complete
Like expand-or-complete, except that menu completion is used.

Chapter 18: Zsh Line Editor 192

reverse-menu-complete
Perform menu completion, like menu-complete, except that if a menu completion
is already in progress, move to the previous completion rather than the next.

end-of-list
When a previous completion displayed a list below the prompt, this widget can be
used to move the prompt below the list.

18.6.6 Miscellaneous

accept-and-hold (ESC-A ESC-a) (unbound) (unbound)
Push the contents of the buffer on the buffer stack and execute it.

accept-and-infer-next-history
Execute the contents of the buffer. Then search the history list for a line matching
the current one and push the event following onto the buffer stack.

accept-line (*J "M) (*J "M) (*J "M)
Finish editing the buffer. Normally this causes the buffer to be executed as a shell
command.

accept-line-and-down-history (~0) (unbound) (unbound)
Execute the current line, and push the next history event on the buffer stack.

auto-suffix-remove
If the previous action added a suffix (space, slash, etc.) to the word on the command
line, remove it. Otherwise do nothing. Removing the suffix ends any active menu
completion or menu selection.

This widget is intended to be called from user-defined widgets to enforce a desired
suffix-removal behavior.

auto-suffix-retain
If the previous action added a suffix (space, slash, etc.) to the word on the command
line, force it to be preserved. Otherwise do nothing. Retaining the suffix ends any
active menu completion or menu selection.

This widget is intended to be called from user-defined widgets to enforce a desired
suffix-preservation behavior.

beep Beep, unless the BEEP option is unset.

bracketed-paste ("~ [[200~) (~[[2007) (~[[200~)
This widget is invoked when text is pasted to the terminal emulator. It is not
intended to be bound to actual keys but instead to the special sequence generated
by the terminal emulator when text is pasted.

When invoked interactively, the pasted text is inserted to the buffer and placed in
the cutbuffer. If a numeric argument is given, shell quoting will be applied to the
pasted text before it is inserted.

When a named buffer is specified with vi-set-buffer ("x), the pasted text is stored
in that named buffer but not inserted.

When called from a widget function as ‘bracketed-paste name‘, the pasted text
is assigned to the variable name and no other processing is done.

See also the zle_bracketed_paste parameter.

vi-cmd-mode (“X"V) (unbound) (~[)
Enter command mode; that is, select the ‘vicmd’ keymap. Yes, this is bound by
default in emacs mode.

Chapter 18: Zsh Line Editor 193

vi-caps-lock-panic
Hang until any lowercase key is pressed. This is for vi users without the mental
capacity to keep track of their caps lock key (like the author).

clear-screen ("L ESC-"L) ("L) (L)
Clear the screen and redraw the prompt.

deactivate-region
Make the current region inactive. This disables vim-style visual selection mode if it
is active.

describe-key-briefly
Reads a key sequence, then prints the function bound to that sequence.

exchange-point-and-mark ("X"X) (unbound) (unbound)
Exchange the cursor position (point) with the position of the mark. Unless a neg-
ative numeric argument is given, the region between point and mark is activated
so that it can be highlighted. If a zero numeric argument is given, the region is
activated but point and mark are not swapped.

execute-named-cmd (ESC-x) (:) (unbound)
Read the name of an editor command and execute it. Aliasing this widget with ‘zle
-A’ or replacing it with ‘zle -N’ has no effect when interpreting key bindings, but
‘zle execute-named-cmd’ will invoke such an alias or replacement.

A restricted set of editing functions is available in the mini-buffer. Keys are
looked up in the special command keymap, and if not found there in the main
keymap. An interrupt signal, as defined by the stty setting, will abort the
function. Note that the following always perform the same task within the
executed-named-cmd environment and cannot be replaced by user defined wid-
gets, nor can the set of functions be extended. The allowed functions are:
backward-delete-char, vi-backward-delete-char, clear—-screen, redisplay,
quoted-insert, vi-quoted-insert, backward-kill-word, vi-backward-kill-
word, kill-whole-line, vi-kill-line, backward-kill-line, list-choices,
delete-char-or-list, complete-word, accept-line, expand-or-complete and
expand-or-complete-prefix.

kill-region kills the last word, and vi-cmd-mode is treated the same as accept-line.
The space and tab characters, if not bound to one of these functions, will complete
the name and then list the possibilities if the AUTO_LIST option is set. Any other
character that is not bound to self-insert or self-insert-unmeta will beep and
be ignored. The bindings of the current insert mode will be used.

Currently this command may not be redefined or called by name.

execute-last-named-cmd (ESC-z) (unbound) (unbound)
Redo the last function executed with execute-named-cmd.

Like execute-named-cmd, this command may not be redefined, but it may be called
by name.

get-line (ESC-G ESC-g) (unbound) (unbound)
Pop the top line off the buffer stack and insert it at the cursor position.

pound-insert (unbound) (#) (unbound)
If there is no # character at the beginning of the buffer, add one to the beginning
of each line. If there is one, remove a # from each line that has one. In either case,
accept the current line. The INTERACTIVE_COMMENTS option must be set for this to
have any usefulness.

Chapter 18: Zsh Line Editor 194

vi-pound-insert
If there is no # character at the beginning of the current line, add one. If there is
one, remove it. The INTERACTIVE_COMMENTS option must be set for this to have any
usefulness.

push-input
Push the entire current multiline construct onto the buffer stack and return to the
top-level (PS1) prompt. If the current parser construct is only a single line, this is
exactly like push-1ine. Next time the editor starts up or is popped with get-1line,
the construct will be popped off the top of the buffer stack and loaded into the
editing buffer.

push-line ("Q ESC-Q ESC-q) (unbound) (unbound)
Push the current buffer onto the buffer stack and clear the buffer. Next time the
editor starts up, the buffer will be popped off the top of the buffer stack and loaded
into the editing buffer.

push-line-or-edit
At the top-level (PS1) prompt, equivalent to push-line. At a secondary (PS2)
prompt, move the entire current multiline construct into the editor buffer. The
latter is equivalent to push-input followed by get-line.

read-command
Only useful from a user-defined widget. A keystroke is read just as in normal
operation, but instead of the command being executed the name of the command
that would be executed is stored in the shell parameter REPLY. This can be used as
the argument of a future zle command. If the key sequence is not bound, status 1
is returned; typically, however, REPLY is set to undefined-key to indicate a useless
key sequence.

recursive-edit

Only useful from a user-defined widget. At this point in the function, the editor
regains control until one of the standard widgets which would normally cause zle
to exit (typically an accept-line caused by hitting the return key) is executed.
Instead, control returns to the user-defined widget. The status returned is non-zero
if the return was caused by an error, but the function still continues executing and
hence may tidy up. This makes it safe for the user-defined widget to alter the
command line or key bindings temporarily.

The following widget, caps-lock, serves as an example.

self-insert-ucase() {
LBUFFER+=${ (UDKEYS[-1]1}
}

integer stat
zle -N self-insert self-insert-ucase
zle -A caps-lock save-caps-lock

zle -A accept-line caps-lock

zle recursive-edit
stat=$7

zle -A .self-insert self-insert
zle -A save-caps-lock caps-lock

Chapter 18: Zsh Line Editor 195

zle -D save-caps-lock
((stat)) &% zle send-break

return $stat

This causes typed letters to be inserted capitalised until either accept-line (i.e.
typically the return key) is typed or the caps-lock widget is invoked again; the
later is handled by saving the old definition of caps-lock as save-caps-lock and
then rebinding it to invoke accept-1line. Note that an error from the recursive edit
is detected as a non-zero return status and propagated by using the send-break
widget.

redisplay (unbound) ("R) ("R)
Redisplays the edit buffer.

reset-prompt (unbound) (unbound) (unbound)
Force the prompts on both the left and right of the screen to be re-expanded,
then redisplay the edit buffer. This reflects changes both to the prompt variables
themselves and changes in the expansion of the values (for example, changes in time
or directory, or changes to the value of variables referred to by the prompt).

Otherwise, the prompt is only expanded each time zle starts, and when the dis-
play has been interrupted by output from another part of the shell (such as a job
notification) which causes the command line to be reprinted.

reset-prompt doesn’t alter the special parameter LASTWIDGET.

send-break ("G ESC-"G) (unbound) (unbound)
Abort the current editor function, e.g. execute-named-command, or the editor itself,
e.g. if you are in vared. Otherwise abort the parsing of the current line; in this case
the aborted line is available in the shell variable ZLE_LINE_ABORTED. If the editor
is aborted from within vared, the variable ZLE_VARED_ABORTED is set.

run-help (ESC-H ESC-h) (unbound) (unbound)
Push the buffer onto the buffer stack, and execute the command ‘run-help cmd’,
where cmd is the current command. run-help is normally aliased to man.

vi-set-buffer (unbound) (") (unbound)
Specify a buffer to be used in the following command. There are 37 buffers that
can be specified: the 26 ‘named’ buffers "a to "z, the ‘yank’ buffer "0, the nine
‘queued’ buffers "1 to "9 and the ‘black hole’ buffer "_. The named buffers can also
be specified as "A to "Z.

When a buffer is specified for a cut, change or yank command, the text concerned
replaces the previous contents of the specified buffer. If a named buffer is specified
using a capital, the newly cut text is appended to the buffer instead of overwriting
it. When using the "_ buffer, nothing happens. This can be useful for deleting text
without affecting any buffers.

If no buffer is specified for a cut or change command, "1 is used, and the contents
of "1 to "8 are each shifted along one buffer; the contents of "9 is lost. If no buffer
is specified for a yank command, "0 is used. Finally, a paste command without a
specified buffer will paste the text from the most recent command regardless of any
buffer that might have been used with that command.

When called from a widget function by the zle command, the buffer can optionally
be specified with an argument. For example,

zle vi-set-buffer A

Chapter 18: Zsh Line Editor 196

vi-set-mark (unbound) (m) (unbound)
Set the specified mark at the cursor position.

set-mark-command (~@) (unbound) (unbound)
Set the mark at the cursor position. If called with a negative numeric argument, do
not set the mark but deactivate the region so that it is no longer highlighted (it is
still usable for other purposes). Otherwise the region is marked as active.

spell-word (ESC-$ ESC-S ESC-s) (unbound) (unbound)
Attempt spelling correction on the current word.

split-undo
Breaks the undo sequence at the current change. This is useful in vi mode as changes
made in insert mode are coalesced on entering command mode. Similarly, undo will
normally revert as one all the changes made by a user-defined widget.

undefined-key
This command is executed when a key sequence that is not bound to any command
is typed. By default it beeps.

undo ("_ "“Xu "X"U) (u) (unbound)
Incrementally undo the last text modification. When called from a user-defined
widget, takes an optional argument indicating a previous state of the undo history
as returned by the UNDO_CHANGE_NO variable; modifications are undone until that
state is reached, subject to any limit imposed by the UNDO_LIMIT_NO variable.

Note that when invoked from vi command mode, the full prior change made in
insert mode is reverted, the changes having been merged when command mode was
selected.

redo (unbound) ("R) (unbound)
Incrementally redo undone text modifications.

vi-undo-change (unbound) (unbound) (unbound)
Undo the last text modification. If repeated, redo the modification.

visual-mode (unbound) (v) (unbound)
Toggle vim-style visual selection mode. If line-wise visual mode is currently enabled
then it is changed to being character-wise. If used following an operator, it forces
the subsequent movement command to be treated as a character-wise movement.

visual-line-mode (unbound) (V) (unbound)
Toggle vim-style line-wise visual selection mode. If character-wise visual mode is
currently enabled then it is changed to being line-wise. If used following an operator,
it forces the subsequent movement command to be treated as a line-wise movement.

what-cursor-position ("X=) (ga) (unbound)
Print the character under the cursor, its code as an octal, decimal and hexadecimal
number, the current cursor position within the buffer and the column of the cursor
in the current line.

where-is Read the name of an editor command and print the listing of key sequences that
invoke the specified command. A restricted set of editing functions is available in
the mini-buffer. Keys are looked up in the special command keymap, and if not found
there in the main keymap.

which-command (ESC-7) (unbound) (unbound)
Push the buffer onto the buffer stack, and execute the command ‘which-command
cmd’. where cmd is the current command. which-command is normally aliased to
whence.

Chapter 18: Zsh Line Editor 197

vi-digit-or-beginning-of-line (unbound) (0) (unbound)
If the last command executed was a digit as part of an argument, continue the
argument. Otherwise, execute vi-beginning-of-line.

18.6.7 Text Objects

Text objects are commands that can be used to select a block of text according to some criteria.
They are a feature of the vim text editor and so are primarily intended for use with vi operators
or from visual selection mode. However, they can also be used from vi-insert or emacs mode.
Key bindings listed below apply to the viopp and visual keymaps.

select-a-blank-word (aW)
Select a word including adjacent blanks, where a word is defined as a series of
non-blank characters. With a numeric argument, multiple words will be selected.

select-a-shell-word (aa)
Select the current command argument applying the normal rules for quoting.

select-a-word (aw)
Select a word including adjacent blanks, using the normal vi-style word definition.
With a numeric argument, multiple words will be selected.

select-in-blank-word (iW)
Select a word, where a word is defined as a series of non-blank characters. With a
numeric argument, multiple words will be selected.

select-in-shell-word (ia)
Select the current command argument applying the normal rules for quoting. If the
argument begins and ends with matching quote characters, these are not included
in the selection.

select-in-word (iw)
Select a word, using the normal vi-style word definition. With a numeric argument,
multiple words will be selected.

18.7 Character Highlighting

The line editor has the ability to highlight characters or regions of the line that have a particular
significance. This is controlled by the array parameter zle_highlight, if it has been set by the
user.

If the parameter contains the single entry none all highlighting is turned off. Note the parameter
is still expected to be an array.

Otherwise each entry of the array should consist of a word indicating a context for highlighting,
then a colon, then a comma-separated list of the types of highlighting to apply in that context.

The contexts available for highlighting are the following:

default Any text within the command line not affected by any other highlighting. Text
outside the editable area of the command line is not affected.

isearch =~ When one of the incremental history search widgets is active, the area of the com-
mand line matched by the search string or pattern.

region The currently selected text. In emacs terminology, this is referred to as the region
and is bounded by the cursor (point) and the mark. The region is only highlighted
if it is active, which is the case after the mark is modified with set-mark-command
or exchange-point-and-mark. Note that whether or not the region is active has
no effect on its use within emacs style widgets, it simply determines whether it is
highlighted. In vi mode, the region corresponds to selected text in visual mode.

Chapter 18: Zsh Line Editor 198

special Individual characters that have no direct printable representation but are shown in
a special manner by the line editor. These characters are described below.

suffix This context is used in completion for characters that are marked as suffixes that
will be removed if the completion ends at that point, the most obvious example
being a slash (/) after a directory name. Note that suffix removal is configurable;
the circumstances under which the suffix will be removed may differ for different

completions.
paste Following a command to paste text, the characters that were inserted.
When region_highlight is set, the contexts that describe a region — isearch, region,

suffix, and paste — are applied first, then region_highlight is applied, then the remaining
zle_highlight contexts are applied. If a particular character is affected by multiple specifica-
tions, the last specification wins.

zle_highlight may contain additional fields for controlling how terminal sequences to change
colours are output. Each of the following is followed by a colon and a string in the same form
as for key bindings. This will not be necessary for the vast majority of terminals as the defaults
shown in parentheses are widely used.

fg_start_code (\e[3)
The start of the escape sequence for the foreground colour. This is followed by one
to three ASCII digits representing the colour. Only used for palette colors, i.e. not
24-bit colors specified via a color triplet.

fg_default_code (9)
The number to use instead of the colour to reset the default foreground colour.

fg_end_code (m)
The end of the escape sequence for the foreground colour.

bg_start_code (\e[4)
The start of the escape sequence for the background colour. See fg_start_code
above.

bg_default_code (9)
The number to use instead of the colour to reset the default background colour.

bg_end_code (m)
The end of the escape sequence for the background colour.

The available types of highlighting are the following. Note that not all types of highlighting are
available on all terminals:

none No highlighting is applied to the given context. It is not useful for this to appear
with other types of highlighting; it is used to override a default.

fg=colour The foreground colour should be set to colour, a decimal integer, the name of one
of the eight most widely-supported colours or as a ‘#’ followed by an RGB triplet
in hexadecimal format.

Not all terminals support this and, of those that do, not all provide facilities to
test the support, hence the user should decide based on the terminal type. Most
terminals support the colours black, red, green, yellow, blue, magenta, cyan and
white, which can be set by name. In addition. default may be used to set the
terminal’s default foreground colour. Abbreviations are allowed; b or bl selects
black. Some terminals may generate additional colours if the bold attribute is also
present.

Chapter 18: Zsh Line Editor 199

bg=colour

bold

standout

underline

On recent terminals and on systems with an up-to-date terminal database the num-
ber of colours supported may be tested by the command ‘echotc Co’; if this suc-
ceeds, it indicates a limit on the number of colours which will be enforced by the
line editor. The number of colours is in any case limited to 256 (i.e. the range 0 to
255).

Some modern terminal emulators have support for 24-bit true colour (16 million
colours). In this case, the hex triplet format can be used. This consists of a ‘#’
followed by either a three or six digit hexadecimal number describing the red,
green and blue components of the colour. Hex triplets can also be used with 88
and 256 colour terminals via the zsh/nearcolor module (see Section 22.18 [The
zsh/nearcolor Module|, page 314).

Colour is also known as color.

The background colour should be set to colour. This works similarly to the fore-
ground colour, except the background is not usually affected by the bold attribute.

The characters in the given context are shown in a bold font. Not all terminals
distinguish bold fonts.

The characters in the given context are shown in the terminal’s standout mode. The
actual effect is specific to the terminal; on many terminals it is inverse video. On
some such terminals, where the cursor does not blink it appears with standout mode
negated, making it less than clear where the cursor actually is. On such terminals
one of the other effects may be preferable for highlighting the region and matched
search string.

The characters in the given context are shown underlined. Some terminals show
the foreground in a different colour instead; in this case whitespace will not be
highlighted.

The characters described above as ‘special’ are as follows. The formatting described here is used
irrespective of whether the characters are highlighted:

ASCII control characters

Control characters in the ASCII range are shown as ‘~’ followed by the base char-
acter.

Unprintable multibyte characters

This item applies to control characters not in the ASCII range, plus other characters
as follows. If the MULTIBYTE option is in effect, multibyte characters not in the
ASCII character set that are reported as having zero width are treated as combining
characters when the option COMBINING_CHARS is on. If the option is off, or if a
character appears where a combining character is not valid, the character is treated
as unprintable.

Unprintable multibyte characters are shown as a hexadecimal number between angle
brackets. The number is the code point of the character in the wide character set;
this may or may not be Unicode, depending on the operating system.

Invalid multibyte characters

If the MULTIBYTE option is in effect, any sequence of one or more bytes that does not
form a valid character in the current character set is treated as a series of bytes each
shown as a special character. This case can be distinguished from other unprintable
characters as the bytes are represented as two hexadecimal digits between angle
brackets, as distinct from the four or eight digits that are used for unprintable
characters that are nonetheless valid in the current character set.

Chapter 19: Completion Widgets 200

Not all systems support this: for it to work, the system’s representation of wide
characters must be code values from the Universal Character Set, as defined by IS0
10646 (also known as Unicode).

Wrapped double-width characters
When a double-width character appears in the final column of a line, it is instead
shown on the next line. The empty space left in the original position is highlighted
as a special character.

If zle_highlight is not set or no value applies to a particular context, the defaults applied are
equivalent to

zle_highlight=(region:standout special:standout
suffix:bold isearch:underline paste:standout)

i.e. both the region and special characters are shown in standout mode.

Within widgets, arbitrary regions may be highlighted by setting the special array parameter
region_highlight; see Section 18.4 [Zle Widgets], page 174.

19 Completion Widgets

19.1 Description

The shell’s programmable completion mechanism can be manipulated in two ways; here the low-
level features supporting the newer, function-based mechanism are defined. A complete set of
shell functions based on these features is described in the next chapter, Chapter 20 [Completion
System], page 215, and users with no interest in adding to that system (or, potentially, writing
their own — see dictionary entry for ‘hubris’) should skip the current section. The older system
based on the compctl builtin command is described in Chapter 21 [Completion Using compctl],
page 285.

Completion widgets are defined by the -C option to the zle builtin command provided by the
zsh/zle module (see Section 22.33 [The zsh/zle Module|, page 339). For example,

zle -C complete expand-or-complete completer

defines a widget named ‘complete’. The second argument is the name of any of the
builtin widgets that handle completions: complete-word, expand-or-complete, expand-
or-complete-prefix, menu-complete, menu-expand-or-complete, reverse—-menu-complete,
list-choices, or delete-char-or-list. Note that this will still work even if the widget in
question has been re-bound.

When this newly defined widget is bound to a key using the bindkey builtin command defined in
the zsh/zle module (Chapter 18 [Zsh Line Editor|, page 163), typing that key will call the shell
function ‘completer’. This function is responsible for generating completion matches using the
builtins described below. As with other ZLE widgets, the function is called with its standard
input closed.

Once the function returns, the completion code takes over control again and treats the matches
in the same manner as the specified builtin widget, in this case expand-or-complete.

Chapter 19: Completion Widgets 201

19.2 Completion Special Parameters

The parameters ZLE_REMOVE_SUFFIX_CHARS and ZLE_SPACE_SUFFIX_CHARS are used by the
completion mechanism, but are not special. See Section 15.6 [Parameters Used By The Shell],
page 89.

Inside completion widgets, and any functions called from them, some parameters have special
meaning; outside these functions they are not special to the shell in any way. These parameters
are used to pass information between the completion code and the completion widget. Some
of the builtin commands and the condition codes use or change the current values of these
parameters. Any existing values will be hidden during execution of completion widgets; except
for compstate, the parameters are reset on each function exit (including nested function calls
from within the completion widget) to the values they had when the function was entered.

CURRENT This is the number of the current word, i.e. the word the cursor is currently on in
the words array. Note that this value is only correct if the ksharrays option is not
set.

IPREFIX Initially this will be set to the empty string. This parameter functions like PREFIX;
it contains a string which precedes the one in PREFIX and is not considered part of
the list of matches. Typically, a string is transferred from the beginning of PREFIX
to the end of IPREFIX, for example:

TPREFTIX=${PREFIX%%\=*}=
PREFTX=${PREFIX#*=}

causes the part of the prefix up to and including the first equal sign not to be treated
as part of a matched string. This can be done automatically by the compset builtin,
see below.

ISUFFIX As IPREFIX, but for a suffix that should not be considered part of the matches; note
that the ISUFFIX string follows the SUFFIX string.

PREFIX Initially this will be set to the part of the current word from the beginning of the
word up to the position of the cursor; it may be altered to give a common prefix for
all matches.

QIPREFIX This parameter is read-only and contains the quoted string up to the word being
completed. E.g. when completing ‘"foo’, this parameter contains the double quote.
If the -q option of compset is used (see below), and the original string was ‘"foo
bar’ with the cursor on the ‘bar’, this parameter contains ‘"foo ’.

QISUFFIX Like QIPREFIX, but containing the suffix.

SUFFIX Initially this will be set to the part of the current word from the cursor position
to the end; it may be altered to give a common suffix for all matches. It is most
useful when the option COMPLETE_IN_WORD is set, as otherwise the whole word on
the command line is treated as a prefix.

compstate
This is an associative array with various keys and values that the completion code
uses to exchange information with the completion widget. The keys are:

all_quotes
The -q option of the compset builtin command (see below) allows a
quoted string to be broken into separate words; if the cursor is on one
of those words, that word will be completed, possibly invoking ‘compset
-q’ recursively. With this key it is possible to test the types of quoted
strings which are currently broken into parts in this fashion. Its value
contains one character for each quoting level